Lectures
1.Basic terms of process modelling, classification of models according to different criteria. Physical modelling and its importance in various fields of science. System Similarity, the similarity constants. The geometric, kinematic and dynamic similarity. Dynamic similarity of hydrodynamic systems. Basic types of forces in hydrodynamics. Thermal similarity.
2.Dimensionless parameters (similarity criteria), the distribution and properties of similarity criteria. A complete physical equations, the basic equations, the criterial equations. Determination of dimensionless parameters using dimensional analysis, practical examples of using of dimensional analysis.
3. Determination of dimensionless parameters using method of similarity transformation of the basic equations. Similarity transformation of the Navier-Stokes equations.
4.Approximate physical modelling. Automodelling. Physical meaning of some similarity criteria, the issue of respecting of the identity of Fr and Re criteria. Determination of volumetric flow scales.
5. The experimental nature of physical modelling. Methods for determination of retention times, the impulse-response method, the RTD curves, flow visualization. The principles of construction of physical models. Basic experimental techniques in physical modelling of flow of liquid metals.
6. Fundamentals of flow reactors - hypothetical models of flow, plug flow, perfect mixing. Real reactor. Theoretical retention time. Curve C, curve F. A combined flow model, mean retention time, short-flow, dead volume. Dispersion flow model.
7. Theoretical principles of mathematical modelling of fluid flow phenomena. Flow of real fluids. Laminar and turbulent flow. Navier-Stokes equations and continuity equation. Mathematical models of turbulence. Computational mesh. Discretization technique.
8. CFD software systems. The procedure of numerical simulation in CFD programme ANSYS FLUENT. Preprocessing - geometry creation and generation of computational mesh, the definition of a physical model, the choice of turbulence model, setting of the operational conditions, determination of material properties and boundary conditions. Processing - Solving: the actual implementation of the calculation (stationary, nonstationary), convergence of the solution. Postprocessing - evaluation of results. Examples of using CFD programmes in practice.
9. The selection of suitable mathematical models to describe transient metallurgical processes. Empirical - mathematical and physical (adequate) - mathematical approach a solution. Theoretical foundations of the mathematical description of the transient processes. Approaches and methods for solving of approximation and regression. Parametric identification.
10. The method of planned experiment - DOE. Basic terms, objectives, utilization of planned experiment. Develop a plan of the experiment. Calculation of the effects of factors and interactions. Development of the model experiment. Software support of DOE methodology. Practical use of DOE methods.
11. Static and dynamic model of heat management in the oxygen converter. Basic management level, superior management level. The essence of a dynamic model of management, monitoring of the heat, the relevant data to manage the heat, the methods of measurement. The main features of calculating the charge for heat in oxygen converter. Innovation of melting process.
To obtain credit in the combined study form is needed to develop a session project.
1.Basic terms of process modelling, classification of models according to different criteria. Physical modelling and its importance in various fields of science. System Similarity, the similarity constants. The geometric, kinematic and dynamic similarity. Dynamic similarity of hydrodynamic systems. Basic types of forces in hydrodynamics. Thermal similarity.
2.Dimensionless parameters (similarity criteria), the distribution and properties of similarity criteria. A complete physical equations, the basic equations, the criterial equations. Determination of dimensionless parameters using dimensional analysis, practical examples of using of dimensional analysis.
3. Determination of dimensionless parameters using method of similarity transformation of the basic equations. Similarity transformation of the Navier-Stokes equations.
4.Approximate physical modelling. Automodelling. Physical meaning of some similarity criteria, the issue of respecting of the identity of Fr and Re criteria. Determination of volumetric flow scales.
5. The experimental nature of physical modelling. Methods for determination of retention times, the impulse-response method, the RTD curves, flow visualization. The principles of construction of physical models. Basic experimental techniques in physical modelling of flow of liquid metals.
6. Fundamentals of flow reactors - hypothetical models of flow, plug flow, perfect mixing. Real reactor. Theoretical retention time. Curve C, curve F. A combined flow model, mean retention time, short-flow, dead volume. Dispersion flow model.
7. Theoretical principles of mathematical modelling of fluid flow phenomena. Flow of real fluids. Laminar and turbulent flow. Navier-Stokes equations and continuity equation. Mathematical models of turbulence. Computational mesh. Discretization technique.
8. CFD software systems. The procedure of numerical simulation in CFD programme ANSYS FLUENT. Preprocessing - geometry creation and generation of computational mesh, the definition of a physical model, the choice of turbulence model, setting of the operational conditions, determination of material properties and boundary conditions. Processing - Solving: the actual implementation of the calculation (stationary, nonstationary), convergence of the solution. Postprocessing - evaluation of results. Examples of using CFD programmes in practice.
9. The selection of suitable mathematical models to describe transient metallurgical processes. Empirical - mathematical and physical (adequate) - mathematical approach a solution. Theoretical foundations of the mathematical description of the transient processes. Approaches and methods for solving of approximation and regression. Parametric identification.
10. The method of planned experiment - DOE. Basic terms, objectives, utilization of planned experiment. Develop a plan of the experiment. Calculation of the effects of factors and interactions. Development of the model experiment. Software support of DOE methodology. Practical use of DOE methods.
11. Static and dynamic model of heat management in the oxygen converter. Basic management level, superior management level. The essence of a dynamic model of management, monitoring of the heat, the relevant data to manage the heat, the methods of measurement. The main features of calculating the charge for heat in oxygen converter. Innovation of melting process.
To obtain credit in the combined study form is needed to develop a session project.