Skip to main content
Skip header
Ukončeno v akademickém roce 2009/2010

Transport Phenomena I

Type of study Master
Language of instruction Czech
Code 619-0020/02
Abbreviation PJ(I)
Course title Transport Phenomena I
Credits 7
Coordinating department Department of Physical Chemistry and Theory of Technological Processes
Course coordinator doc. RNDr. Věra Dobrovská, CSc.

Osnova předmětu

Tenzorový počet
Skalár, vektor, tenzor. Vektorové operace, vektorové diferenciální operace..
Tenzory 2. řádu. Tenzorové operace, diferenciální operace s tenzory. Hlavní
směry a invarianty symetrického tenzoru 2. řádu. Teorie pole. Gradient
skalárního pole. Skalární potenciál. Divergence a rotace vektorového pole. Tok
vektoru uzavřenou plochou. Integrální věty pro vektory a tenzory: Stokesova,
Gauss-Ostrogradského. Složky vektorů a tenzorů v křivočarých souřadnicích.
Diferenciální operátory v ortogonálních křivočarých souřadnicích. Aplikace
tenzorového počtu v přenosových jevech: Rovnice kontinuity. Přenos tepla,
hmoty.

Okrajové úlohy pro obyčejné diferenciální rovnice (DR)
Formulace okrajové úlohy (OÚ). Okrajové podmínky. Samoadjungovaný tvar lineární
DR 2. řádu. Ortogonální soustavy funkcí. Fourierovy řady. Homogenní OÚ. Vlastní
čísla a vlastní funkce homogenní OÚ. Sturmova-Liouvilleova úloha. Besselova
rovnice. Některé metody řešení nehomogenních OÚ: Metoda přímé integrace.
Fourierova metoda. Metoda variace konstant (Greenova funkce). Metoda konečných
diferencí (metoda sítí). Aplikace: Stacionární vedení tepla v tuhých tělesech.
Stacionární, jednorozměrné vedení tepla v desce, válci a kouli.

Okrajové úlohy pro parciální diferenciální rovnice (PDR)
Lineární PDR 2. řádu a jejich klasifikace. Podmínky počáteční, okrajové.
Formulace OÚ pro rovnice evoluční a stacionární. Některé metody řešení OÚ
rovnic parabolického typu: Metoda separace proměnných (Fourierova metoda).
Metoda kombinace proměnných (metoda podobnostní transformace). Metoda
fundamentálního řešení (metoda Greenovy funkce). Metoda konečných diferencí
(metoda sítí). Řešení OÚ rovnic eliptického typu. Metoda separace proměnných.
Metoda konečných diferencí. Aplikace metod na řešení modelových úloh:
Nestacionární vedení tepla v poloomezeném tělese. Nesymetrický a symetrický
ohřev neomezené desky. Ohřívání desky konečné tloušťky. Nestacionární vedení
tepla v neomezeném válci a v kouli. Nestacionární vedení tepla v tělesech
konečné velikosti. Řešení OÚ difúzní rovnice: difúze mezi dvěma poloprostory,
difúze v poloprostoru, difúze ve vrstvě konečné tloušťky.

Povinná literatura

Farrashkhalvat,J.P.: Tensor methods for engineers. Publ. Ellis Horwood, New
York, London 1990.
Bick,T.A.: Elementary boundary value problems. Marcel Dekker, New York 1993.
Carrier,G.F., Pearson,C.E.:Partial differential equations, theory and
technique. Academia press, Boston 1988.
Bird,R.B.,Stewart,W.E.,Lightfoot,E.N.: Transport phenomena. John Wiley & Sons,
New York 1965.

Doporučená literatura

K tomuto předmětu nebyla specifikována žádná doporučená literatura.