Lecture
Theory of similarity. Similarity. Similarity constant, an indicator of similarity, the similarity criterion. Criterion equations. Analysis of basic equations.
Flow. Basic terms. Physical properties of fluids. The basic types of pressure - geometric, static, dynamic and loss. Fluid Statics. Statics of one gas. Calculation of atmospheric pressure. Statics of two gases. Euler's equation of fluid statics. Differential equations for the pressure function.
Fluid Dynamics. Flow of fluids - classification. General equation of continuity, the continuity equation for one-way flow. Euler's equation of motion, the substance's derivation. Equation Navier - Stokes.
Bernoulli's equation. Types of real fluid flow. Reynolds criterion. Laminar flow in pipes. Velocity profile, Hagen-Poiseulle law.
Turbulent flow. Boundary layer. Hydraulic losses - loss of pressure, height loss. Friction - Darcy-Weisbach relation. Types of roughness. Effect of roughness on hydraulic resistance.
Friction coefficient at circular pipes - 5 areas. Friction coefficient at noncircular pipes. Local losses. Outflow of gas holes. Gas discharge at low speeds. Gas discharge at high speeds.
Critical pressure, density, temperature, speed. Critical mass flow. Flow in high speed. Easy jet, Laval nozzle. Exhaust gas - stack height.
Heat transfer - basic mechanisms. Heat conduction. Basic concepts. Fourier's first law. The thermal conductivity of gases, liquids, solids. Fourier heat equation. Conditions of uniformity.
Steady-state heat conduction through plane wall - surface condition of the 1st, 2nd, 3rd kind. Multi-layer plane wall.
Steady-state heat conduction through cylindrical wall - surface condition of the 1st, 2nd, 3rd kind. Multi-layer cylindrical wall.
Multidirectional steady-state tasks: analytical solutions - a method of separation of variables, numerical solutions. Unsteady heat conduction - numerical solution.
Heat convection. Fourier-Kirchhoff equation. Heat transfer between fluid and solid body surface. The actual values of the coefficient of heat transfer by convection. Mean coefficient of heat transfer by convection. Using similarity theory for solving convection heat transfer. Heat transfer by free and forced convection. Effect of fluid temperature change on heat convection.
Heat radiation. Physical principles of radiation. Planck's law. Wien's displacement law. Stefan-Boltzmann law. Lambert's law. Radiation properties. Kirchhoff's law.
Spectral radiation properties. Grey body. Radiation between the bodies. Angular coefficient. Radiation between two parallel flat surfaces, the effect of shielding. Radiation between two curved surfaces. Radiation of gases and their mixtures.
Tutorials
The basic thermodynamic parameters, physical properties of fluids.
Basic laws of ideal gases, statics and dynamics of fluid.
Calculation loss of pressure, loss of friction, local resistance and buoyancy.
Outflow of gas holes at low and high speeds with a simple and Laval nozzles.
Natural exhaust gas, calculate the basic parameters of the stack.
Check exam.
Heat conduction, Fourier's first law, plane and cylindrical wall.
Heat convection, the basic criteria of similarity, free and forced convection.
Heat radiation, heat exchange between the two flat surfaces, the effect of shading area, radiation of gases.
Combined heat transfer.
Check exam. Credit.
Theory of similarity. Similarity. Similarity constant, an indicator of similarity, the similarity criterion. Criterion equations. Analysis of basic equations.
Flow. Basic terms. Physical properties of fluids. The basic types of pressure - geometric, static, dynamic and loss. Fluid Statics. Statics of one gas. Calculation of atmospheric pressure. Statics of two gases. Euler's equation of fluid statics. Differential equations for the pressure function.
Fluid Dynamics. Flow of fluids - classification. General equation of continuity, the continuity equation for one-way flow. Euler's equation of motion, the substance's derivation. Equation Navier - Stokes.
Bernoulli's equation. Types of real fluid flow. Reynolds criterion. Laminar flow in pipes. Velocity profile, Hagen-Poiseulle law.
Turbulent flow. Boundary layer. Hydraulic losses - loss of pressure, height loss. Friction - Darcy-Weisbach relation. Types of roughness. Effect of roughness on hydraulic resistance.
Friction coefficient at circular pipes - 5 areas. Friction coefficient at noncircular pipes. Local losses. Outflow of gas holes. Gas discharge at low speeds. Gas discharge at high speeds.
Critical pressure, density, temperature, speed. Critical mass flow. Flow in high speed. Easy jet, Laval nozzle. Exhaust gas - stack height.
Heat transfer - basic mechanisms. Heat conduction. Basic concepts. Fourier's first law. The thermal conductivity of gases, liquids, solids. Fourier heat equation. Conditions of uniformity.
Steady-state heat conduction through plane wall - surface condition of the 1st, 2nd, 3rd kind. Multi-layer plane wall.
Steady-state heat conduction through cylindrical wall - surface condition of the 1st, 2nd, 3rd kind. Multi-layer cylindrical wall.
Multidirectional steady-state tasks: analytical solutions - a method of separation of variables, numerical solutions. Unsteady heat conduction - numerical solution.
Heat convection. Fourier-Kirchhoff equation. Heat transfer between fluid and solid body surface. The actual values of the coefficient of heat transfer by convection. Mean coefficient of heat transfer by convection. Using similarity theory for solving convection heat transfer. Heat transfer by free and forced convection. Effect of fluid temperature change on heat convection.
Heat radiation. Physical principles of radiation. Planck's law. Wien's displacement law. Stefan-Boltzmann law. Lambert's law. Radiation properties. Kirchhoff's law.
Spectral radiation properties. Grey body. Radiation between the bodies. Angular coefficient. Radiation between two parallel flat surfaces, the effect of shielding. Radiation between two curved surfaces. Radiation of gases and their mixtures.
Tutorials
The basic thermodynamic parameters, physical properties of fluids.
Basic laws of ideal gases, statics and dynamics of fluid.
Calculation loss of pressure, loss of friction, local resistance and buoyancy.
Outflow of gas holes at low and high speeds with a simple and Laval nozzles.
Natural exhaust gas, calculate the basic parameters of the stack.
Check exam.
Heat conduction, Fourier's first law, plane and cylindrical wall.
Heat convection, the basic criteria of similarity, free and forced convection.
Heat radiation, heat exchange between the two flat surfaces, the effect of shading area, radiation of gases.
Combined heat transfer.
Check exam. Credit.