1. Basic reasons and goals of structure characterization at a wide range of length scales (macrostructure, microstructure, nanostructure). Comparison of spatial resolution limits of microscopic techniques.
2. Light microscopy. Principle of light microscope. Preparation of specimens. Typical tasks of light microscopy at quality control of materials – microstructure, micro-cleanliness and grain size. Quantitative metallography, automated image analysis. Analysis of projected images. Errors of measurement.
3. Interaction of X-ray and electrons with specimens. Basic rules for reciprocal lattice. Geometrical conditions of diffraction. Bragg´s law and Ewald sphere.
4. X-ray diffraction analysis of polycrystalline materials. Typical tasks of X-ray diffraction analysis. Quantitative analysis – methods of internal and external standards, standardless analysis.
5. Evaluation of residual stresses. Macro-stress, determination of particle size in coarse grained materials. Principles of texture evaluation. X-ray diffraction analysis on single crystals. X- ray fluorescence analysis. Neutron diffraction.
6. Instruments based on focused electron beam. Principles of transmission and scanning electron microscopes.
7. Contrast mechanisms in transmission electron microscopy: amplitude, phase and Z contrasts. Basic principles of kinematic and dynamic theory of electron scattering, contrast on crystallographic defects.
8. High resolution transmission electron microscopy (HRTEM).
9. Preparation of specimens for transmission electron microscopy. Focused ion beam technique.
10. Electron diffraction techniques: selected area diffraction and convergent beam diffraction. Interpretation of diffraction patterns from single crystals and polycrystalline materials. EDX and EELS techniques.
11. Contrast mechanisms in scanning electron microscopy. Interpretation of images in secondary electrons and in backscattered electrons. Electron back scattered diffraction (EBSD).
12. X ray microanalysis: wave and energy dispersive analyses (EDX and WDX). Auger spectroscopy.
13. Probe scanning microscopy: AFM, STM and MFM. Field ion microscopy and atom probe tomography (APT).
14. Examples of structure characterization in the field of materials sciencew and engineering.
2. Light microscopy. Principle of light microscope. Preparation of specimens. Typical tasks of light microscopy at quality control of materials – microstructure, micro-cleanliness and grain size. Quantitative metallography, automated image analysis. Analysis of projected images. Errors of measurement.
3. Interaction of X-ray and electrons with specimens. Basic rules for reciprocal lattice. Geometrical conditions of diffraction. Bragg´s law and Ewald sphere.
4. X-ray diffraction analysis of polycrystalline materials. Typical tasks of X-ray diffraction analysis. Quantitative analysis – methods of internal and external standards, standardless analysis.
5. Evaluation of residual stresses. Macro-stress, determination of particle size in coarse grained materials. Principles of texture evaluation. X-ray diffraction analysis on single crystals. X- ray fluorescence analysis. Neutron diffraction.
6. Instruments based on focused electron beam. Principles of transmission and scanning electron microscopes.
7. Contrast mechanisms in transmission electron microscopy: amplitude, phase and Z contrasts. Basic principles of kinematic and dynamic theory of electron scattering, contrast on crystallographic defects.
8. High resolution transmission electron microscopy (HRTEM).
9. Preparation of specimens for transmission electron microscopy. Focused ion beam technique.
10. Electron diffraction techniques: selected area diffraction and convergent beam diffraction. Interpretation of diffraction patterns from single crystals and polycrystalline materials. EDX and EELS techniques.
11. Contrast mechanisms in scanning electron microscopy. Interpretation of images in secondary electrons and in backscattered electrons. Electron back scattered diffraction (EBSD).
12. X ray microanalysis: wave and energy dispersive analyses (EDX and WDX). Auger spectroscopy.
13. Probe scanning microscopy: AFM, STM and MFM. Field ion microscopy and atom probe tomography (APT).
14. Examples of structure characterization in the field of materials sciencew and engineering.