Skip to main content
Skip header
Terminated in academic year 2015/2016

Theory of Probability and Mathematical Statistics

Type of study Doctoral
Language of instruction Czech
Code 639-0907/03
Abbreviation TPMS
Course title Theory of Probability and Mathematical Statistics
Credits 10
Coordinating department Department of Quality Management
Course coordinator prof. RNDr. Josef Tošenovský, CSc.

Subject syllabus

1. Conditional event algebra
2. Probability
3. Discrete and Continuous Random Variables
4. Cumulative Distribution Function
5. Discrete and Continuous Uniform Distribution
6. Binomial Distribution
7. Normal Distribution
8. Multiple Disrete and Continuous Random Variable
9. Bivariate Normal Distribution
10. Functions of Random Variables
11. Mean and Variance of Continuous and Discrete Random Variable
12. Random Sampling
13. Data Description - Mean, Variance, Standard Deviation, Median, Others
14. Point Estimation of Parameters
15. Statistical Intervals fot a Single Sample
16. Tests of Hypotheses for a Single Sample
17. Simple Linear Regression and Correlation
18. Multiple Linear Regression
19. Test of Independence in Contingency Tables
20. Multivariate Statistical Analysis
21. Graphical Methods for Data Analysis

Literature

JAMES, G., D. WITTEN, T. HASTIE and R. TIBSHIRANI. An Introduction to Statistical Learning. NY: Springer, 2013. ISBN 978-1-4614-7138-7 .
KUTNER, M. H.,CH. J. NACHTSHEIM and J. NETER. Applied Linear Regression Models. NY:McGraw-Hill, 2004. ISBN 0-07-301344-7 .
BOX,G. E. P.,HUNTER,W.G. and J.S. HUNTER. Statistics for Experimenters.
NY: Wiley&Sons, 1978. ISBN 0-471-09315-7 .

Advised literature

MONTGOMERY, D. C. Applied Statistics and Probability for Engineers. NY: Wiley, 2010. ISBN-13 978-1-1185-3971-2 .
SHESKIN, D. J. Handbook of Parametric and Nonparametric Statistical Procedures. NY: Chapman and Hall, 2003. ISBN 1-58488-440-1 .