Skip to main content
Skip header

Nanosensors and Spintronics

Type of study Follow-up Master
Language of instruction Czech
Code 653-3163/01
Abbreviation NaS
Course title Nanosensors and Spintronics
Credits 4
Coordinating department Department of Materials Engineering and Recycling
Course coordinator Ing. Robin Silber, Ph.D.

Subject syllabus

1. Special theory of relativity, Maxwell equations, Minkowski spacetime, electromagnetic tensor
2. Orbital and spin angular momentum, spin operators, Pauli matrices, spin-orbit interaction
3. Spin accumulation and spin current, Valet-Fert theory
4. Lateral spin transport, spin injection, electrical detection of spin current
5. Anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), tunnel magnetoresistance (TMR)
6. Spin-transfer torque (STT), spin pumping, domain walls
7.-8. Spintronic devices, magnetoresistive memory (MRAM)
9.-10. Hall effect, anomalous Hall effect, spin Hall effect
11.-12. Materials for spintronics, half-metals, Heusler alloys
13. Spin diffusion length, Rashba effect

Literature

Teruya Shinjo (Editor), Nanomagnetism and Spintronics, Elsevier (2009).
S. Maekawa, Concepts in spin-electronics, Oxford University Press (2006).
F.J. Jedema, PhD. thesis, University of Groningen, The Netherlands (2002).
T. Valet and A. Fert, Theory of the perpendicular magnetoresistance in magnetic multilayers, Phys. Rev. B 48, 7099 (1993).
T. Yang, T. Kimura and Y. Otani, Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching, Nature Physics 4, 851 (2008).

Advised literature

A. C. Grimes, E. C. Dickey, M.V. Pishko.: Encyclopedia of Sensors, American Scientific Publishers, 10 dílů, ISBN: 1-59883-056-X , 2005.
P. Strange, Relativistic Quantum Mechanics, Cambridge University Press 1998.