Skip to main content
Skip header
Terminated in academic year 2004/2005

Mathematics - Bc.

Type of study Master
Language of instruction Czech
Code 714-0364/03
Abbreviation M(VR)
Course title Mathematics - Bc.
Credits 9
Coordinating department Department of Mathematics and Descriptive Geometry
Course coordinator doc. RNDr. Jarmila Doležalová, CSc.

Subject syllabus

Předmět je rozdělen do dvou částí Matematika III (rozsah 3+2) a Numerická
matematika (rozsah 2+2), jejichž výuka probíhá odděleně.
Matematika III
Osnova přednášek:
1. Soustavy lineárních diferenciálních rovnic s konstantními koeficienty -
definice, maticový zápis, řešení, fundamentální systém řešení, věta o
existenci a jednoznačnosti řešení, eliminační metoda řešení.
2. Eulerova metoda řešení soustav LDR, charakteristické kořeny, čísla a
vektory.
3. Základní typy úloh (charakteristické kořeny reálné různé, vícenásobné a
komplexně sdružené).
4. Dvojný integrál na pravoúhelníku – integrabilní funkce, zavedení dělením
pravoúhelníka, vlastnosti, Dirichletova věta.
5. Dvojný integrál na obecné uzavřené rovinné oblasti – normální oblast,
Fubiniova věta.
6. Transformace do polárních a zobecněných polárních souřadnic, geometrický
a fyzikální význam dvojného integrálu.
7. Trojný integrál na kvádru – integrabilní funkce, zavedení dělením kvádru,
vlastnosti, Dirichletova věta.
8. Trojný integrál na obecné uzavřené trojrozměrné regulární oblasti,
normální oblast, Fubiniova věta.
9. Transformace do cylindrických a sférických souřadnic, geometrické a
fyzikální aplikace.
10. Vektorová analýza – vektorová funkce, její geometrický a fyzikální
význam, skalární pole a jeho gradient, derivace ve směru, vektorové pole, jeho
divergence a rotace, Hamiltonův a Laplaceův operátor, složené operátory.
11. Křivkový integrál I. a II. druhu – křivka, její zápis a orientace,
zavedení křivkových integrálů dělením křivky, výpočet, fyzikální a geometrická
interpretace, základní vlastnosti.
12. Greenova věta, nezávislost na integrační cestě, užití.
13. Plošný integrál I. a II. druhu, základní vlastnosti, Gauss-
Ostrogradského věta, aplikace.
14. Nekonečné číselné řady - definice, součet řady, konvergence a
divergence, nutná podmínka konvergence, harmonická a geometrická řada, Bolzano-
Cauchyův konvergenční princip, zbytek řady.
15. Kritéria konvergence řad s kladnými členy – podílové, odmocninové,
Raabeovo, integrální a srovnávací.
16. Alternující řady – absolutní a relativní konvergence, Leibnizovo
kritérium.
17. Operace s řadami.
18. Nekonečné funkční řady - definice, obor konvergence, stejnoměrná
konvergence, vlastnosti.
19. Mocninné řady - interval a poloměr konvergence.
Osnova cvičení:
1. Lineární diferenciální rovnice II. řádu s konstantními koeficienty,
eliminační metoda řešení soustav LDR.
2. Eulerova metoda řešení homogenních soustav LDR – charakteristické kořeny
reálné různé a vícenásobné.
3. Eulerova metoda řešení homogenních soustav LDR – charakteristické kořeny
komplexně sdružené.
4. 1. test – soustavy LDR.
Dvojný integrál na souřadnicovém pravoúhelníku.
5. Dvojný integrál na obecné uzavřené rovinné oblasti.
6. Transformace do polárních souřadnic. Geometrický a fyzikální význam
dvojného integrálu.
7. Trojný integrál na souřadnicovém kvádru a na obecné uzavřené trojrozměrné
regulární oblasti.
8. Transformace do cylindrických a sférických souřadnic. Geometrické a
fyzikální aplikace.
9. 2. test – dvojný a trojný integrál. Vektorová funkce.
10. Skalární pole a jeho gradient, derivace ve směru.
11. Vektorové pole, jeho divergence a rotace, složené operátory vektorové
analýzy.
12. Křivkový integrál I. druhu v rovině i prostoru.
13. Křivkový integrál II. druhu v rovině i prostoru, Greenova věta,
nezávislost na integrační cestě.
14. 3. test – skalární a vektorové pole, křivkový integrál.

Literature

Škrášek, J.-Tichý, Z.: Základy aplikované matematiky II, SNTL Praha, 1986
Častová, N. a kol.: Cvičení z matematiky III, skriptum VŠB, Ostrava 1988
Burda, P.-Doležalová, J.: Cvičení z matematiky IV, skriptum VŠB, Ostrava 1990
Ševčík, Z.-Šimáček, L.: Sbírka řešených úloh z diferenciálních rovnic, skriptum
VŠB, Ostrava 1986
Boháč,Z.-Častová,N.: Základní numerické metody. Skriptum VŠB, Ostrava 1985.
Dalík,J.: MATEMATIKA. Numerické metody. Skriptum VUT, Brno 1992.
Míka,S.: Numerické metody algebry. MVŠT, SNTL 1982.
Přikryl,P.: Numerické metody matematické anlýzy. MVŠT, SNTL 1985.
Ralston,A.: Základy numerické matematiky. Academia 1973.
Vitásek,E.: Numerické metody, SNTL, Praha 1987.
Zörnig,P.: Numerické metody. Skriptum ČVUT, Praha 1989.

Advised literature

No advised literature has been specified for this subject.