Syllabus of lecture
1 Systems of n ordinary linear differential equations of the first order for n functions: definition, representation at matrix form, methods of solution of systems of 2 equations for 2 functions
2 Euler method for homogeneous systems of n equations for n functions
3 Integral calculus of functions of several independent variables: two-dimensional integrals on coordinate rectangle, on bounded subset of R2
4 Transformation - polar coordinates, geometrical and physical applications
5 Three-dimensional integrals on coordinate cube, on bounded subset of R3
6 Transformation - cylindrical and spherical coordinates, geometrical and physical applications
7 Vector analysis, gradient
8 Divergence, rotation
9 Line integral of the first and of the second kind
10 Green´s theorem, potential
11 Geometrical and physical applications
12 Infinite number series
13 Infinite series of functions, power series
Syllabus of seminar
1 Systems of n ordinary linear differential equations of the first order for n functions: definition, representation at matrix form, methods of solution of systems of 2 equations for 2 functions
2 Euler method for homogeneous systems of n equations for n functions
3 Euler method for homogeneous systems of n equations for n functions, test
4 Integral calculus of functions of several independent variables: two-dimensional integrals on coordinate rectangle, on bounded subset of R2
5 Transformation - polar coordinates
6 Geometrical and physical applications
7 Three-dimensional integrals on coordinate cube, on bounded subset of R3
8 Transformation - cylindrical and spherical coordinates
9 Geometrical and physical applications, test
10 Vector analysis, gradient
11 Divergence, rotation
12 Line integral of the first kind
13 Line integral of the second kind, test
14 Geometrical and physical applications
1 Systems of n ordinary linear differential equations of the first order for n functions: definition, representation at matrix form, methods of solution of systems of 2 equations for 2 functions
2 Euler method for homogeneous systems of n equations for n functions
3 Integral calculus of functions of several independent variables: two-dimensional integrals on coordinate rectangle, on bounded subset of R2
4 Transformation - polar coordinates, geometrical and physical applications
5 Three-dimensional integrals on coordinate cube, on bounded subset of R3
6 Transformation - cylindrical and spherical coordinates, geometrical and physical applications
7 Vector analysis, gradient
8 Divergence, rotation
9 Line integral of the first and of the second kind
10 Green´s theorem, potential
11 Geometrical and physical applications
12 Infinite number series
13 Infinite series of functions, power series
Syllabus of seminar
1 Systems of n ordinary linear differential equations of the first order for n functions: definition, representation at matrix form, methods of solution of systems of 2 equations for 2 functions
2 Euler method for homogeneous systems of n equations for n functions
3 Euler method for homogeneous systems of n equations for n functions, test
4 Integral calculus of functions of several independent variables: two-dimensional integrals on coordinate rectangle, on bounded subset of R2
5 Transformation - polar coordinates
6 Geometrical and physical applications
7 Three-dimensional integrals on coordinate cube, on bounded subset of R3
8 Transformation - cylindrical and spherical coordinates
9 Geometrical and physical applications, test
10 Vector analysis, gradient
11 Divergence, rotation
12 Line integral of the first kind
13 Line integral of the second kind, test
14 Geometrical and physical applications