1. Complex numbers. Infinite complex number series.
2. Complex functions of a complex variable and mappings. Elementary functions of complex variable.
3. Complex differentiation. Cauchy - Riemann equations.
4. Integration of complex variable function. Cauchy´s theorems.
5. Taylor´s and Laurent´s series.
6. Singularities,residues, applications. Laplace transform, definition.
7. Properties of Laplace transformation.
8. Backward Laplace transformation.
9. Applications.
10. Integral transform. Fourier transform.
11. Equations of mathematical physics.Fourier’s method.
12. Combination of variable method. Green’s function method.
13. Aplications.
14. Reserve.
2. Complex functions of a complex variable and mappings. Elementary functions of complex variable.
3. Complex differentiation. Cauchy - Riemann equations.
4. Integration of complex variable function. Cauchy´s theorems.
5. Taylor´s and Laurent´s series.
6. Singularities,residues, applications. Laplace transform, definition.
7. Properties of Laplace transformation.
8. Backward Laplace transformation.
9. Applications.
10. Integral transform. Fourier transform.
11. Equations of mathematical physics.Fourier’s method.
12. Combination of variable method. Green’s function method.
13. Aplications.
14. Reserve.