Skip to main content
Skip header

Data Analysis in MS Excel

Type of study Bachelor
Language of instruction Czech
Code 157-1327/01
Abbreviation ADE
Course title Data Analysis in MS Excel
Credits 4
Coordinating department Department of Systems Engineering and Informatics
Course coordinator Ing. Vítězslav Novák, Ph.D.

Osnova předmětu

1) Excel – repeating the necessary basics
2) Excel – work with lists
3) Excel – data analysis using formulas
4) Excel – data analysis using structured tables
5) Excel – data analysis using pivot tables and charts
6) Excel – data analysis using the Power Pivot add-on and the DAX language
7) Excel – data import and transformation using Power Query
8) Power BI – the philosophy of the tool
9) Power BI – creating reports in Power BI Desktop
10) Power BI – DAX language in Power BI
11) Power BI - relationships
12) Power BI – Power Query in Power BI

E-learning

Students have all presentations, assignments and exercises data in LMS Moodle.

Povinná literatura

WINSTON, Wayne. Microsoft Excel Data Analysis and Business Modeling (Office 2021 and Microsoft 365). San Francisco, Microsoft Press, 2021. ISBN 978-0137613663 .
ALEXANDER, Michael and KUSLEIKA, Dick. Microsoft Excel 365 Bible. Indianapolis, John Wiley & Sons, 2022. ISBN 978-1119835103 .
DECKLER, Greg and POWELL, Brett. Mastering Microsoft Power BI - Second Edition: Expert techniques to create interactive insights for effective data analytics and business intelligence. Birmingham, Packt Publishing, 2022. ISBN 978-1801811484.

Advised literature

FERRARI, Alberto and Marco RUSSO. Analyzing Data with Microsoft Power BI and Power Pivot for Excel. Redmond, Washington: Microsoft Press, 2017. ISBN 978-1-5093-0276-5.
RUSSO, Marco and Alberto FERRARI. The Definitive Guide to DAX: Business Intelligence for Microsoft Power BI, SQL Server Analysis Services, and Excel Second Edition. Redmond, Washington: Microsoft Press, 2019. ISBN 978-1509306978 .
DECKLER, Greg. Learn Power BI - Second Edition: A comprehensive, step-by-step guide for beginners to learn real-world business intelligence. Birmingham, Packt Publishing, 2022. ISBN 978-1801811958 .