Skip to main content
Skip header

Mathematics 1

Type of study Bachelor
Language of instruction Czech
Code 310-2117/02
Abbreviation M1
Course title Mathematics 1
Credits 6
Coordinating department Department of Mathematics and Descriptive Geometry
Course coordinator Mgr. Jiří Krček, Ph.D.

Subject syllabus

Lectures
=================

I. Functions of one real variable
------------------------------------------------
Definition, graph and basic properties. Elementary functions. Operations with functions. Parametric and implicit functions. Limit of the function, continuous functions.

II. The calculus
------------------------------------------------
Definition of the derivative, basic rules for differentiation. Parametric differentiation, higher-order derivatives. Applications of the derivatives: tangent line, Taylor polynomial, extremes of a function,
behaviour of the graph (monotony, convexity, critical and inflection points), inverse functions,
computation of limits by l'Hospital rule, asymptotes.

III. Linear algebra and Analytic geometry
------------------------------------------------
Systems of linear equations, Gaussian elimination. Matrices, rank of a matrix. Matrix inversion, Determinant, its computation and properties. Cramer rule.
Analytic geometry in Euclidean space. Dot product and cross product. Line and plane in 3D-Euclidean space.

Tutorials:
=================
1. Pre-calculus. simplifying of algebraic expressions, rules for computation of powers, exponentials, logarithms, solution of (in)equalities.
2. Domains of functions of one real variable.
3. Graphs and properties of elementary functions .
4. Differentiation: rules of computation (for any variable), simplifying, chain rule.
5. Analytic geometry in Euclidean space.

Literature

BIRD, J. O. Higher engineering mathematics. Eighth edition. London: Routledge, Taylor & Francis Group, 2017. ISBN 978-1-138-67357-1 .
NEUSTUPA, Jiří. Mathematics. 2. Vyd. Praha: Vydavatelství ČVUT, 2004. ISBN 80-01-02946-8 .
BĚLOHLÁVKOVÁ, Jana, Jan KOTŮLEK, Worksheets for Mathematics I. 1. vyd. Ostrava: VŠB-TUO, 2020.

Advised literature

ANDREESCU, Titu. Essential linear algebra with applications: a problem-solving approach. New York: Birkhäuser, [2014]. ISBN 978-0-8176-4360-7 .
HARSHBARGER, Ronald J. a REYNOLDS, James J. Calculus with applications. 2nd ed. Lexington: D.C. Heath, 1993. xiv, 592 s. ISBN 0-669-33162-7 .
James, G.: Modern Engineering Mathematics. Addison-Wesley, 1992. ISBN 0-201-1805456