Skip to main content
Skip header

Introduction to FEM

Type of study Bachelor
Language of instruction Czech
Code 330-0310/01
Abbreviation UMKP
Course title Introduction to FEM
Credits 2
Coordinating department Department of Applied Mechanics
Course coordinator prof. Ing. Radim Halama, Ph.D.

Osnova předmětu

1. Lecture – Elementary thought of FEM. Selection of interpolator functions. Types of elements. Derivation of stiffness matrix of a truss element. Equations of an elasticity mathematical theory. Minimal principle of potential energy. Process at FEM calculation. Conditions of convergence.
2. Lecture – assembly of global stiffness matrix and right side. Foundations of Ansys Workbench (description of individual models, work with help). Example 1: application example – beam in 3D.
3. Lecture – Computational modelling. Simplified exercises from 3D to 1D and 2D. Example 2: wrenche.
4. Lecture – Choice of boundary conditions. Singularity. Reading geometry from CAD model and its modification. Example 3: symmetry usage.
5. Lecture- Error of FEM calculation (aposteriori estimate). Adaptive FEM algorithm (h-method). Example 4: Think walled pressure tin.
6. Lecture - Seminary work.
7. Lecture – Seminary work.
8. Lecture – Seminary work.
9. Lecture – Final test, finalization and handing over a seminary work.

E-learning

no

Povinná literatura

[1] MADENCI, E., GUVEN, I. The Finite Element Method and Applications in Engineering Using Ansys®. Springer, 2006, 686p. ISBN 978-0-387-28290-9
[2] ZIENKIEWICZ, O. C., TAYLOR,R.L. a ZHU, J.Z. The finite element method: its basis and fundamentals. 6th ed. Oxford: Elsevier Butterworth-Heinemann, 2005. ISBN 0-7506-6320-0.

Doporučená literatura

[1] BEER,G.-WATSON,J.O. Introduction to Finite and Boundary Element Methods for Engineers. John Wiley & Sons, 1992, 509p.ISBN 0-471-92813-5