The program of lectures
Week Lectures content
1 Purpose and definitions of power. Kinematics load. The basic equation of motion.
2 Application of equations of motion, work load and drive systems. Optimization of power transfer.
3 Energy balance of heat transfer performance. Power losses.
4 Motors: classification, characteristics, properties. DC and AC motors.
5 Engines - classification, characteristics, properties, regulation.
6 Combustion turbines. Pneumatic motors. Motors.
7 Mechanical transmission, distribution, properties and loss.
8 Hydrostatic transmission, structure, parameters of regulation.
9 Hydrodynamic transmission, distribution, properties. Hydrodynamic coupling theory, design characteristics.
10 Torque converter, theory, design characteristics. Cooperation hydrodynamic transmission with driver.
11 Combined transfers. Purpose and application. Branching performance.
12 Multi-engine drives. The theory characteristics.
13 A common characteristic of the motor and load. Design and calculation of the driving engines.
14 Comparison of different types of power transfer. Consultation.
Program of exercises and seminars + individual students' work
Week Content of exercises and seminars
1 Continuation of a lecture.
2 Application of equations of motion. Parameters drive the heavy door.
3 Calculation of the characteristic drive. Calculation of the travel drive
vehicle. Program No. 1
4 Calculation of warming and cooling in the hydrostatic power transmission.
Program No. 2
5 Seminar - brochures transfers, engines and applications.
6 Calculation of regulating the characteristics of the hydrostatic transmission.
7 Consultation for the specified programs.
8 Calculation of hydrodynamic coupling.
9 Continuing the calculation of hydrodynamic coupling.
10 Calculation of the hydrodynamic characteristics of the drive.
11 Control Test.
12 Calculation of multi-engine drive.
13 Reserve and consultations.
14 Credits
List of questions to eqamination
No. Wording of the question
1 Purpose of the drive, the distribution, composition and management. Types of engines and transmission mechanisms.
2 Drives starting procedures, basic relations, confrontation.
3 The fundamental equation for power and torque reduction. Working modes of drives.
4 Allocation of machines according to the nature of the burden, equiv. moment.
5 Power dissipation, an equivalent value. The thermal energy equation.
6 The course of warming and cooling. Calculation of cooling.
7 DC motors, characteristics, speed control, braking. Applications.
8 AC motors, characteristics, speed control, braking. Applications.
9 Internal combustion piston engines, characteristics, parameters. Increasing the power piston internal combustion engines, control, use.
10 Combustion turbines, characteristics, regulation, use.
11 Hydraulic motors, distribution, characteristics, advantages and disadvantages of use. Low speed hydraulic motor.
12 Basic characteristics of motors, control output parameters.
13 Hydraulic braking, the field of use.
14 Pneumatic motors, characteristics, advantages and disadvantages, working parameters, control, use.
15 Mechanical transmission, distribution and parameters. Harmonic transmission.
16 Speed chart, losses and efficiency.
17 Hydrostatic transmission, distribution, speed and torque transformation.
18 Control range and characteristics of the hydrostatic transmission.
19 Combined mechanical and hydrostatic transfers, composition, characteristics, efficiency.
20 Hydrodynamic transmission, distribution, basic characteristics.
21 Hydrodynamic coupling, principle of operation, characteristics, regulation.
22 Hydraulic brake, principles, characteristics, applications.
23 Torque converter, principles, structure, characteristics.
24 Combined mechanical and hydrodynamic transfers, composition, characteristics, use.
25 Multi-engine drives, benefits, organization, theory, optimization.
26 The common characteristics of the motor and load, design, static steadiness.
Week Lectures content
1 Purpose and definitions of power. Kinematics load. The basic equation of motion.
2 Application of equations of motion, work load and drive systems. Optimization of power transfer.
3 Energy balance of heat transfer performance. Power losses.
4 Motors: classification, characteristics, properties. DC and AC motors.
5 Engines - classification, characteristics, properties, regulation.
6 Combustion turbines. Pneumatic motors. Motors.
7 Mechanical transmission, distribution, properties and loss.
8 Hydrostatic transmission, structure, parameters of regulation.
9 Hydrodynamic transmission, distribution, properties. Hydrodynamic coupling theory, design characteristics.
10 Torque converter, theory, design characteristics. Cooperation hydrodynamic transmission with driver.
11 Combined transfers. Purpose and application. Branching performance.
12 Multi-engine drives. The theory characteristics.
13 A common characteristic of the motor and load. Design and calculation of the driving engines.
14 Comparison of different types of power transfer. Consultation.
Program of exercises and seminars + individual students' work
Week Content of exercises and seminars
1 Continuation of a lecture.
2 Application of equations of motion. Parameters drive the heavy door.
3 Calculation of the characteristic drive. Calculation of the travel drive
vehicle. Program No. 1
4 Calculation of warming and cooling in the hydrostatic power transmission.
Program No. 2
5 Seminar - brochures transfers, engines and applications.
6 Calculation of regulating the characteristics of the hydrostatic transmission.
7 Consultation for the specified programs.
8 Calculation of hydrodynamic coupling.
9 Continuing the calculation of hydrodynamic coupling.
10 Calculation of the hydrodynamic characteristics of the drive.
11 Control Test.
12 Calculation of multi-engine drive.
13 Reserve and consultations.
14 Credits
List of questions to eqamination
No. Wording of the question
1 Purpose of the drive, the distribution, composition and management. Types of engines and transmission mechanisms.
2 Drives starting procedures, basic relations, confrontation.
3 The fundamental equation for power and torque reduction. Working modes of drives.
4 Allocation of machines according to the nature of the burden, equiv. moment.
5 Power dissipation, an equivalent value. The thermal energy equation.
6 The course of warming and cooling. Calculation of cooling.
7 DC motors, characteristics, speed control, braking. Applications.
8 AC motors, characteristics, speed control, braking. Applications.
9 Internal combustion piston engines, characteristics, parameters. Increasing the power piston internal combustion engines, control, use.
10 Combustion turbines, characteristics, regulation, use.
11 Hydraulic motors, distribution, characteristics, advantages and disadvantages of use. Low speed hydraulic motor.
12 Basic characteristics of motors, control output parameters.
13 Hydraulic braking, the field of use.
14 Pneumatic motors, characteristics, advantages and disadvantages, working parameters, control, use.
15 Mechanical transmission, distribution and parameters. Harmonic transmission.
16 Speed chart, losses and efficiency.
17 Hydrostatic transmission, distribution, speed and torque transformation.
18 Control range and characteristics of the hydrostatic transmission.
19 Combined mechanical and hydrostatic transfers, composition, characteristics, efficiency.
20 Hydrodynamic transmission, distribution, basic characteristics.
21 Hydrodynamic coupling, principle of operation, characteristics, regulation.
22 Hydraulic brake, principles, characteristics, applications.
23 Torque converter, principles, structure, characteristics.
24 Combined mechanical and hydrodynamic transfers, composition, characteristics, use.
25 Multi-engine drives, benefits, organization, theory, optimization.
26 The common characteristics of the motor and load, design, static steadiness.