Skip to main content
Skip header

Turbulence

Summary

The subject is focused on modeling possibilities of turbulent fluid flow in different areas of mechanical engineering, civil engineering, aviation, metallurgy and other fields, where there are devices and machines that contain fluid, or use it for their activities. The finite volume method (MKO) will be used to solve the system of flow equations. They will be created during the lessons 2D and 3D CFD models of real equipment in ANSYS Fluent. In the course of education, the program DesignModeler will be used to create geometry and the program ANSYS Meshing will be used to create a computational grid.

Literature

INCROPERA, F., P. ET AL. Fundamentals of heat and mass transfer. 6th ed.. Hoboken : Wiley, c2007 – xxv. 997 s. ISBN 0-471-45728-0 .

SHAUGHNESSY, E. J., KATZ, I. M., SCHAFFER, J. P. INTRODUCTION TO FLUID MECHANICS. New York: Oxford University Press, Inc. 2005. p. 1018.

ANSYS Fluent Theory Guide (Release 18.2). 2017.

Advised literature

RODI, W., FUEYO, N. Engineering Turbulence Modelling and Experiments 5. First edition. Oxford: ELSEVIER SCIENCE Ltd. 2002. p. 1010. ISBN 0-08-044114-9.

ANSYS Fluent Tutorial Guide (Release 18.2). 2017.

ANSYS Fluent User’s Guide (Release 18.2). 2017.


Language of instruction čeština, čeština, angličtina
Code 338-0527
Abbreviation Turbu
Course title Turbulence
Coordinating department Department of Hydromechanics and Hydraulic Equipment
Course coordinator doc. Ing. Marian Bojko, Ph.D.