Skip to main content
Skip header

Theory and modeling of transport 1

Type of study Bachelor
Language of instruction Czech
Code 342-3344/01
Abbreviation TaMD1
Course title Theory and modeling of transport 1
Credits 5
Coordinating department Institute of Transport
Course coordinator doc. Ing. Michal Dorda, Ph.D.

Subject syllabus

1) Introduction to graph theory, basic concepts.
2) Eulerian trail, minimal spanning trees, Hamiltonian paths.
3) Distances in graphs - Floyd's algorithm.
4) Project management - Critical path method.
5) Planning the service of traffic network from one center - Little's algorithm.
6) Localization of emergency centers - Hakimi algorithm.
7) Introduction to linear programming - transport problem.
8) Mathematical model of a transport problem.
9) Algorithm for solving a transport problem.
10) Basic knowledge of probability theory.
11) Introduction to queueing theory, M/M/n/n queueing system.
12) M/M/n/∞ queueing system.
13) M/M/n/m queueing system.
14) Reserve.

E-learning

lms.vsb.cz

Literature

BONDY, John Adrian a MURTY, U. S. R. Graph theory. New York: Springer, c2008. ISBN 978-1-84628-969-9.
CHVÁTAL, Vašek. Linear programming. New York: W.H. Freeman, c1983. ISBN 0-7167-1587-2.
BOLCH, Gunter. Queueing networks and Markov chains: modeling and performance evaluation with computer science applications. 2nd ed. Hoboken: Wiley, c2006. ISBN 0-471-56525-3.

Advised literature

BONDY, John Adrian a MURTY, U. S. R. Graph theory. New York: Springer, c2008. ISBN 978-1-84628-969-9.
CHVÁTAL, Vašek. Linear programming. New York: W.H. Freeman, c1983. ISBN 0-7167-1587-2.
BOLCH, Gunter. Queueing networks and Markov chains: modeling and performance evaluation with computer science applications. 2nd ed. Hoboken: Wiley, c2006. ISBN 0-471-56525-3.