Skip to main content
Skip header

Optimization

Summary

Optimality criteria, conditions for optimality, constrains, forms of solution. The analytical and numerical methods of minimization of functions of single and several variables, equality constrains, inequality constrains. Kuhn-Tucker conditions, saddlepoint conditions. Minimizations of functionals, optimal control problems. Bellman’s principle of optimality and dynamic programming. Pontryagin’s minimum principle. Calculus of variations.

Literature

RAVINDRAN, Auteur, Gintaras V. REKLAITIS and K. M. RAGSDELL. Engineering Optimization. Methods and Applications. New York: John Wilea and Sons, 1983, ISBN 0-471-05579-4.
ROBERTS, Julia a Mykel KOCHENDERFER. Mathematical Optimization [online]. [cit. 2020-04-20]. Dostupné z: https://web.stanford.edu/group/sisl/k12/optimization/
SEWAK, Mohit, Md. Rezaul KARIM a Pradeep PUJARI. Practical Convolutional Neural Networks. Birmingham: Packt Publishing, 2018. ISBN 978-1-78839-230-3 .

Advised literature

ANDERSON, Brian D. O., John B. MOORE. Optimal Control. Linear Quadratic Methods.
Prentice Hal International, London, 1989, ISBN 0-13-638651-2.


Language of instruction čeština, čeština, angličtina
Code 352-0510
Abbreviation OS
Course title Optimization
Coordinating department Department of Control Systems and Instrumentation
Course coordinator Ing. Jolana Škutová, Ph.D.