Lectures:
Fundamental principles and methods of resolving analysis, (Ohm's Law, Kirchhoff's Laws, Thevenin's and Norton's theorems, Superposition theorem, , Faraday's Law), Loop current method, Node voltage method, equivalent circuits - series connection, parallel connection and Star–Delta transformation, voltage and current sources. Resonant circuits, frequency characteristics, Time domain analysis - First-order circuits, Second-order circuits, Laplace transform. Analysis of three-phase circuits. Homogeneous line, primary and secondary parameters, wave impedance.
Exercises:
Electrical unit - voltage, current, resistance, Ohm's law, Kirchhoff's laws, Faraday's law, Resistance - resistors in series, resistors in parallel, resistors in series-parallel, connection star and delta, Y- transformation, Voltage divider, current divider, Thevenin's and Norton's theorems, superposition theorem. Elementary analysis - topology of electrical circuits, loop current analysis, nodal voltage analysis
Alternating current, impedance, admittance, RLC circuit analysis, resonance, phasor diagrams, Power analysis - instantaneous power, active power, reactive power, apparent power, power factor. Three-phase systems. Periodic steady state in linear circuits - modulus and phase frequency response. Transient analysis - first order circuits, higher order circuits. Homogeneous line, primary and secondary parameters, wave impedance. Semester project, 5 tests
Fundamental principles and methods of resolving analysis, (Ohm's Law, Kirchhoff's Laws, Thevenin's and Norton's theorems, Superposition theorem, , Faraday's Law), Loop current method, Node voltage method, equivalent circuits - series connection, parallel connection and Star–Delta transformation, voltage and current sources. Resonant circuits, frequency characteristics, Time domain analysis - First-order circuits, Second-order circuits, Laplace transform. Analysis of three-phase circuits. Homogeneous line, primary and secondary parameters, wave impedance.
Exercises:
Electrical unit - voltage, current, resistance, Ohm's law, Kirchhoff's laws, Faraday's law, Resistance - resistors in series, resistors in parallel, resistors in series-parallel, connection star and delta, Y- transformation, Voltage divider, current divider, Thevenin's and Norton's theorems, superposition theorem. Elementary analysis - topology of electrical circuits, loop current analysis, nodal voltage analysis
Alternating current, impedance, admittance, RLC circuit analysis, resonance, phasor diagrams, Power analysis - instantaneous power, active power, reactive power, apparent power, power factor. Three-phase systems. Periodic steady state in linear circuits - modulus and phase frequency response. Transient analysis - first order circuits, higher order circuits. Homogeneous line, primary and secondary parameters, wave impedance. Semester project, 5 tests