A subject completely deals with an issue of the mathematical methods for processing and modelling of the biological signals and consequent extraction of the clinical information. The first part of the subject is focused on basic methods for processing and analysis of the biological signals in the time, frequency and time-frequency domain. Individual methods always will be put to a context of the real biological signals and practical applications which are closely connected with the clinical practice. A significant part of the subject is an analysis and methods for the noise elimination from the biological signals. In this context, we will use both the synthetic noise generators and real noise signals for demonstration and the noise effect analysis on the diagnostic information quality. As a part of this analysis we will analyze instruments quantifying a noise level and objectively measure the filtration methods effectivity. In the last part of the subject, we will discuss conventional mathematical algorithms which are closely connected with specific tasks from an area of the biomedical signals processing. We will figure out visualization and possibilities of the EEG processing. Algorithms for features extraction from the ECG signal as it is the QRS complex extraction, the R peak detection and heart rate variability (HRV). In the last stage, this subject will be focused on an issue of the PPG, EMG, EGG, breathing and acoustic signals.