Skip to main content
Skip header

Fundamentals of Machine Learning

Summary

The students will learn about the data properties, data storage, and processing in the course. They will also learn methods of data analysis, machine learning, artificial intelligence, interpretation of results and their visualization. The lectures will deal with statistical properties of data, methods of data cleaning and preprocessing. Next, the theoretical description of methods of data processing, machine learning, and artificial intelligence. Students will be able to decide which method is appropriate, what assumptions, what is its principle, and what outputs it can get. The exercises will then serve for practical experiments on suitable datasets, experimenting with data analysis tools, and evaluating results.

Literature

Presentation for lectures.
HASTIE, Trevor., Robert. TIBSHIRANI and J. H. FRIEDMAN. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York, NY: Springer, c2009. ISBN 978-0-387-84858-7.
WITTEN, Ian H., Eibe FRANK, Mark A. HALL and Christopher J. PAL. Data mining: Practical machine learning tools and techniques. Fourth Edition. Amsterdam: Elsevier, 2017. ISBN 978-0-12-804291-5 .

Advised literature

LESKOVEC, Jurij, Anand RAJARAMAN and Jeffrey D. ULLMAN. Mining of massive datasets / Jure Leskovec, Standford University, Anand Rajaraman, Milliways Labs, Jeffrey David Ullman, Standford University. Second edition. Cambridge: Cambridge University Press, 2014. ISBN 9781107077232 .
AGGARWAL, Charu C. Data mining: the textbook. New York, NY: Springer Science+Business Media, 2015. ISBN 978-3-319-14141-1 .


Language of instruction čeština, angličtina
Code 460-2064
Abbreviation ZSU
Course title Fundamentals of Machine Learning
Coordinating department Department of Computer Science
Course coordinator prof. Ing. Jan Platoš, Ph.D.