Skip to main content
Skip header

Image Analysis I

Type of study Follow-up Master
Language of instruction English
Code 460-4080/02
Abbreviation AO1
Course title Image Analysis I
Credits 4
Coordinating department Department of Computer Science
Course coordinator doc. Dr. Ing. Eduard Sojka

Subject syllabus

Lectures:
- Detecting edges in images, gradient methods, zero-crossing method, parametric edge models.
- Image segmentation by region growing/splitting, thresholding, optimal threshold selection, adaptive thresholding.
- Canny edge detector, Hough transform.
- Detecting the feature points in images.
- Measuring the objects for recognition, selecting and computing the descriptors.
- Evaluating the efficiency of descriptors, introduction to universal descriptors (HoG).
- Classification using discriminant functions, clustering, and SVM.
- Classification using classical shallow neural networks.
- Introduction to the deep neural networks, network architectures for detecting and recognising objects in images.
- Introduction to generative networks (GAN networks, diffusion networks).
- Creating 3D models from images, camera calibration, 3D sensors, lidars. SLAM
- The problem of finding the correspondence between the images, and some methods for its solution.
- Analysis of 3D point clouds, detecting the feature points, computing the descriptors, geometric consistency, recognising objects in point clouds.
- Analysis of images changing in time, optical flow, object tracking, Kalman filtering. Recurrent neural networks LSTM, self-attention networks).
- Introduction to action recognition from video sequences.

Computer labs:
- Edge detection, gradient and zero-crossing methods.
- Canny edge detector, parametric edge models.
- Thresholding, optimal threshold selection.
- Hough transform.
- Selecting the features/descriptors for classification.
- Optimizing the set of descriptors, universal descriptors (HoG).
- Classification using etalons and discriminant functions.
- Classification using k-means clustering, classification using SVM.
- Classification using shallow neural networks.
- Classification using deep neural networks.
- Examples of generative network usage.
- Optical flow.
- Tracking the objects in video frames.
- Obtaining the credit.

E-learning

Literature

1. Sojka, E., Gaura, J., Krumnikl, M.: Matematické základy digitálního zpracování obrazu, VŠB-TU Ostrava, 2011.
2. Sojka, E.: Digitální zpracování a analýza obrazů, učební texty, VŠB-TU Ostrava, 2000 (ISBN 80-7078-746-5).
3. Gonzalez, R., C., Woods, R., E.: Digital Image Processing, 4th Edition, Pearson, ISBN-13: 9780134734804 , 9780133356724, 2018.
4. Simon J.D. Prince: Understanding Deep Learning, 2023, https://anthology-of-data.science/resources/prince2023udl.pdf
5. Szeliski, R.: Computer Vision: Algorithms and Applications, Springer, ISBN 9783030343712 , 9783030343729 (eBook), 2022.
6. Gonzalez, R., C., Woods, R., E.: Digital Image Processing, 4th Edition, Pearson, ISBN-13: 9780134734804 , 9780133356724, 2018.

Advised literature

1. Burger, W., Burge, M., J.: Principles of Digital Image Processing: Fundamental Techniques, Springer, ISBN-10: 1848001908 , ISBN-13: 978-1848001909 , 2011
2. Brahmbhatt, S.: Practical OpenCV (Technology in Action), Apress, ISBN-10: 1430260793 , ISBN-13: 978-1430260790 , 2013
3. Petrou, M., Petrou, C.: Image Processing: The Fundamentals, Wiley, ISBN-10: 047074586X , ISBN-13: 978-0470745861 , 2010