Skip to main content
Skip header

Unconventional Algorithms and Computing

Summary

The aim of the lectures is to introduce to the students the problems of non-conventional algorithms, their biological - physical origin. In the lectures will be discussed the various areas of their origin, usually from natural complex systems with emphasis of their physical-mathematical and algorithmic description and implementation of the PC. The lectures will give the students an interdisciplinary perspective on the issue of non-conventional algorithms, complex systems and their dynamic behavior. Students get an overview of modern computational algorithms allowing to model and simulate the otherwise very complicated and complex systems (deterministic chaos, Thom's catastrophe theory, fractal geometry, swarm intelligence, algorithms, quantum mechanics, cellular automata, "physarium machines", "Self-Organized criticality", ...) and vice-versa will get insight on how are unconventional algorithms derived from above mentioned complex systems. After successfully completing the course will have an interdisciplinary graduate survey knowledge of unconventional algorithms and will be able to apply the methods discussed in the course to real problems. Students should be able to continue further in deeper self-study in this topic.

Literature

1. Back T., Fogel D. B. & Michalewicz Z., Handbook of Evolutionary Computation, (Institute of Physics, London), 1997
2. Hilborn R.C.1994, Chaos and Nonlinear Dynamics, Oxford University Press, ISBN 0-19-508816-8 , 1994
3. Ilachinsky A., Cellular Automata: A Discrete Universe, World Scientific Publishing, ISBN 978-9812381835 , 2001

Advised literature

Bekenstein J. D., Information in the Holographic Universe, Scientific American, August, 2003
R. Gilmore 1993, Catastrophe Theory for Scientists and Engineers, John Wiley and Sons, ISBN 0-486-67-539-4, 1993
Gheorghe Paun (Author), Grzegorz Rozenberg (Author), Arto Salomaa, DNA Computing: New Computing Paradigms, Springer, ISBN 978-3540641964 
Zelinka I, Celikovsky S, Richter H and Chen G., (2010) Evolutionary Algorithms and Chaotic Systems, (Eds), Springer, Germany, 550s, 2010.


Language of instruction čeština, angličtina
Code 460-4087
Abbreviation NAVY
Course title Unconventional Algorithms and Computing
Coordinating department Department of Computer Science
Course coordinator prof. Ing. Ivan Zelinka, Ph.D.