Skip to main content
Skip header

Image Analysis II

Type of study Follow-up Master
Language of instruction Czech
Code 460-4107/01
Abbreviation ANO II
Course title Image Analysis II
Credits 4
Coordinating department Department of Computer Science
Course coordinator Ing. Radovan Fusek, Ph.D.

Osnova předmětu

Lectures:
* Basic concepts of object detection in images, sliding window method.
* Methods of face detection in images. Haar type features. Local binary patterns, histograms of oriented gradients and their application to object analysis. Methods of pedestrian detection in images.
* Convolutional neural networks (basic principles, description of layers). Modern variants of convolutional neural networks (e.g. VGGNet, GoogLeNet, ResNet).
* Description of convolutional networks for object localization (e.g. R-CNN, Faster R-CNN, YOLO, SSD).
* Description of generative networks (DCGAN), encoder-decoder networks, transformer networks.
* Image descriptors (SIFT method).
* Optical systems in the area of self-driving vehicles, IR image processing, LIDAR image processing, depth image analysis, use of depth sensors (RealSense, Kinect).


Computer Labs:
* Development of the detector for the selected object of interest, implementation of the sliding window method, preparation of data for the training and testing phases of the detector.
* Detection based on Haar-type features, detection using local binary patterns, analysis of objects using gradients (HOG method), image descriptors (SIFT method).
* Experiments with convolutional neural networks, exploring the parameters of convolutional networks.
* Application of different types of convolutional networks (e.g. VGGNet, GoogLeNet, ResNet), comparison of detectors.
* Practical usage of localization methods based on convolutional networks (e.g. R-CNN, Faster R-CNN, YOLO).
* Practical usage of generative networks (DCGAN), encoder-decoder networks, transformer networks.
* Analysis of objects in IR and depth images (RealSense, Kinect).

E-learning

Materials are available on the educator's website:
https://mrl.cs.vsb.cz//people/fusek/ano2_course.html

Povinná literatura

1. Chollet, F.: Deep Learning with Python. Manning, ISBN-13: 978-1617294433 , 2017
2. Gonzalez, R. C., Woods, R. E.: Digital image processing, New York, NY: Pearson, ISBN-13: 978-0133356724 , 2018
3. Zhang, A., Lipton, Z.C., Li, M., Smola, A.J.: Dive into Deep Learning, https://d2l.ai, 2020

Doporučená literatura

1. Burger, W., Burge, M., J.: Principles of Digital Image Processing: Fundamental Techniques, Springer, ISBN-10: 1848001908 , ISBN-13: 978-1848001909 , 2011
2. Brahmbhatt, S.: Practical OpenCV (Technology in Action), Apress, ISBN-10: 1430260793 , ISBN-13: 978-1430260790 , 2013
3. Gary Bradski, Adrian Kaehler: Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library, O'Reilly Media, 2017