Skip to main content
Skip header

Machine Learning

Type of study Follow-up Master
Language of instruction English
Code 460-4139/02
Abbreviation SU
Course title Machine Learning
Credits 4
Coordinating department Department of Computer Science
Course coordinator prof. Ing. Jan Platoš, Ph.D.

Subject syllabus

Lectures (topics):
1. Frequent patterns in data.
2. Exploratory data analysis.
3. Representative clustering, Hierarchical clustering.
4. Clustering based on data density, cluster validation.
5. Special clustering methods, detection of outliers.
6. Linear classifiers (Linear discriminant analysis, Naive Bayes, Logistic regression).
7. Decision trees, rule classification.
8. Support Vector Machine, Kernel methods.
9. Neural networks.
10. Regression methods and Advanced methods in data classification.
11. Validation of classification algorithms.
12. Time series analysis.

Exercises in the computer room (topics):
1. Implementation of the APRIORI method for searching for rules in data.
2. Exploratory analysis of data over a real dataset using appropriate tools.
3. Implementation of hierarchical clustering - Agglomerative clustering.
4. Implementation of DBSCAN algorithm.
5. Real example of clustering - independent work on exercises.
6. Dimension reduction.
7. Implementation of decision tree.
8. Testing the Support Vector Machine method over real data.
9. Neural networks.
10. Regression methods.
11. Ensemble methods and their use.
12. Classification - real example.
13. Time series analysis.

E-learning

All materials are published on the e-learning portal (https://www.vsb.cz/e-vyuka/en).

Literature

- Slides from Lectures
[1] AGGARWAL, Charu C. Data mining: the textbook. New York, NY: Springer Science+Business Media, 2015. ISBN 978-3-319-14141-1 .
[2] BRAMER, M. A. Principles of data mining. London: Springer, 2007. ISBN 1-84628-765-0 .

Advised literature

[1] LESKOVEC, Jure, Anand RAJARAMAN a Jeffrey D. ULLMAN. Mining of massive datasets, Standford University. Second edition. Cambridge: Cambridge University Press, 2014. ISBN 9781107077232 .
[2] WITTEN, Ian H., Eibe FRANK, Mark A. HALL a Christopher J. PAL. Data mining: Practical machine learning tools and techniques. Fourth Edition. Amsterdam: Elsevier, [2017]. ISBN 978-0-12-804291-5 .
[3] ZAKI, Mohammed J. a Wagner MEIRA JR. Data Mining and Analysis: Fundamental Concepts and Algorithms. 2nd edition. Cambridge, GB: Cambridge University Press, 2020. ISBN 978-0521766333 .