Skip to main content
Skip header
Terminated in academic year 2010/2011

Linear Algebra

Type of study Bachelor
Language of instruction Czech
Code 470-2201/02
Abbreviation LA1
Course title Linear Algebra
Credits 4
Coordinating department Department of Applied Mathematics
Course coordinator doc. Mgr. Vít Vondrák, Ph.D.

Subject syllabus

Lectures:
Complex numbers
Solution of systems of linear equations by elimation based methods
Algebra of arithmetic vectors and matrices
Inverse matrix
Vector space
Spaces of functions
Derivation and integration of piece-wise linear functions
Linear mapping
Bilinear and quadratic forms
Determinants
Eigenvalues and eigenvectors
An introduction to analytic geometry

Exercises:
Arihmetics of complex numbers

Solution of systems of linear equations
Practicing algebra of arithmetic vectors and matrices
Evaluation of inverse matrix
Examples of vector spaces and deduction from axioms
Evaluation of coordinates of a vector in a given basis
Examples of functional spaces
Examples of linear mappings and evaluation of their matrices
Mtrices of bilinear and quadratic forms
Evaluation of determinants
Evaluation of eigenvalues and eigenvectors
Computational examples from analytic geometry

Literature

G. Strang, Video lectures of Linear Algebra on MIT.
R.A. Horn, C.R. Johnson, Matrix Analysis. Cambridge University Press 1990.
Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM 2003.

Advised literature

G.H. Golub, C.F. Van Loan, Matrix Computations. The Johns Hopkins University Press 2013.
L.N. Trefethen, D. Bau. Numerical Linear Algebra. SIAM 1997.
J. Liesen, Z. Strakoš, Krylov Subspace Methods: Principles and Analysis. Oxford University Press 2012.