Skip to main content
Skip header

Functions of a Complex Variable

Type of study Bachelor
Language of instruction Czech
Code 470-8727/01
Abbreviation FKP AVAT
Course title Functions of a Complex Variable
Credits 4
Coordinating department Department of Applied Mathematics
Course coordinator prof. RNDr. Marek Lampart, Ph.D.

Subject syllabus

Lectures:
Complex functions and mappings. Complex differentiation, contour integration and deforming the contour.
Complex series: power series, Taylor and Laurent series. Residue theorem. Applications.
Introduction to Fourier series. Orthogonal systems of functions. Generalized Fourier series. Applications.
Introduction to integral transforms. Convolution.
Laplace transform, fundamental properties. Inverse Laplace transform. Applications.

Exercises:
Practising of complex functions, linear and quadratic mappings.
Practising of complex differentiation, conformal mappings, contour integration and deforming the contour.
Examples of Taylor and Laurent series and applications.
Examples of orthogonal systems of functions, Fourier series and applications.
Practising of Laplace transform. Solution of differential equation.

Projects:
Two individual works and their presentation on the theme:

Fourier series.
Laplace transform.

E-learning

Basic materials are available on LMS MOODLE.
Consultation through MS Teams.

Literature

G.James and D.Burley, P.Dyke, J.Searl, N.Steele, J.Wright: Advanced Modern Engineering Mathematics,Addison-Wesley Publishing Company, 1994.
William L. Briggs, Van Emden Henson: An Owner's Manual for the Discrete Fourier Transform, SIAM, 1995, ISBN 0-89871-342-0.
Michael W. Frazier: An introduction to wavelets through Linear Algebra, Springer,1999, ISBN 0-387-98639-1.

Advised literature

Galajda, P., Schrötter, Š.: Funkce komplexní proměnné a operátorový počet, Alfa-Bratislava, 1991.
Škrášek, J., Tichý, Z.: Základy aplikované matematiky II, SNTL, Praha, 1986.