Skip to main content
Skip header

Physical Geodesy and Geophysics

Summary

The course includes the science of the physical fields of the Earth, especially the gravitational field, its mathematical description and its influence on geodetic quantities. Current methods of physical geodesy require an understanding of the role of geopotential models in modern geodesy and knowledge of their practical applications. With this in mind, the basics of gravitational, gravity and tidal potentials are discussed using the mathematical apparatus of spherical harmonics and Legendre functions. Practical applications of this issue are discussed and practiced in the issues of altitude systems, fault potential, methods for determining the area and dimensions of geoids and quasi-geoids and obtaining global data of various geophysical quantities using modern geopotential models.
Furthermore, some geophysical methods and their use in engineering geodesy and mining surveying are discussed. The analysis of the physical fields of the Earth's body, in order to solve the problem of its shape and structure (internal structure of the Earth - especially the structure of the earth's crust and upper mantle, etc.) is part of the connection of both methods.
The importance of both methods is in the use and possibility of solving problems in the field of general, structural and deposit geology (tectonophysics; exploration of mineral deposits; localization of faults, etc.), solving problems in the field of engineering geology, environmental geology, hydrogeology, etc. At the same time, new satellite geophysical and geodetic methods enable global applications and forecasting of raw material potential, risks and threats.
With regard to the physical principle and character of the field, which we measure and analyze, the following geophysical methods are included in the subject: - gravimetry (gravity field), - geomagnetics (Earth's geomagnetic field), - geoelectrical methods (both natural and artificial geoelectric fields), - seismic survey and seismology (wave field), - radionuclide methods (radioactive field), - geothermal energy (thermal field).

Literature

HEISKANEN, W.A., MORITZ, H.: Physical Geodesy. W.H.Freeman and Co., 1967.
TELFORD, W. M., GELDART, L., P., SHERIFF, R., E.: Applied Geophysics Second Edition, Published by The Press, 2001.

Advised literature

MORITZ, H.: Advanced physical geodesy. Abarcus Press., 1980.
WAHR, J., Geodesy and Gravity. Syndicate of the University of Cambridge, United Kingdom,. Class Notes, Department of Physics University of Colorado, Samizdat Press, 491p, 1999.


Language of instruction čeština, čeština, čeština, čeština, čeština, čeština
Code 544-0095
Abbreviation FGG
Course title Physical Geodesy and Geophysics
Coordinating department Department of Geodesy and Mine Surveying
Course coordinator doc. RNDr. Lubomil Pospíšil, CSc.