-Ceramics as important technical material, classification, oxidic and non-oxidic ceramics, mixed and cutting ceramics, bio-ceramics. Technological procedures for production of technical ceramics, ceramic powders and their characteristics, shaping of ceramic powders.
-Properties of technical ceramics, mechanical properties, internal factors influencing strength of ceramic materials, fracture toughness, physical properties, thermal properties.
-Brittleness of ceramics, factors influencing mechanical properties. Causes of brittleness of ceramics, fundamental causes, secondary causes. Strengthening mechanisms in ceramic materials, general principles of relations of structure and strength properties, strengthening by effect of dispersive particles, strengthening by development of fine micro-cracks, strengthening by phase transformation, strengthening by high temperatures.
-Properties of the best known technical ceramic materials, use of technical ceramics in practice, perspectives of its future development and use.
-Composite materials, basic characteristics and classification. General characteristics of matrices. Geometry of reinforcements.
-Particle based composites, particle based composites with polymeric matrix, particle based composites with ceramic matrix, particle based composites with metallic matrix. Particle based dispersion-reinforced composites, particle based composites strengthened by single particles.
-Fibre composites, general characteristics of fibres, fibre composites with ceramic matrix, combination of phases and achieved marginal conditions. Process of crack bridging and strengthening of ceramic matrix with fibres.
-Polymeric materials, historical aspects. Polymerisation, poly-addition, poly-condensation. Plastic materials, elastomers, thermoset plastic materials, thermoplastics. Classification and characteristics of polymeric materials.
-Classification of rubbers, natural and synthetic rubber. Basic process of production of natural and synthetic rubber. Synthetic poly-isoprenes. Butadiene-styrene rubbers.
-Phenomenological foundations of viscoelasticity. Rheological models, Maxwell' model, Kelvin's (Voigt's) model.
- Fractures of polymeric materials.
-Properties of technical ceramics, mechanical properties, internal factors influencing strength of ceramic materials, fracture toughness, physical properties, thermal properties.
-Brittleness of ceramics, factors influencing mechanical properties. Causes of brittleness of ceramics, fundamental causes, secondary causes. Strengthening mechanisms in ceramic materials, general principles of relations of structure and strength properties, strengthening by effect of dispersive particles, strengthening by development of fine micro-cracks, strengthening by phase transformation, strengthening by high temperatures.
-Properties of the best known technical ceramic materials, use of technical ceramics in practice, perspectives of its future development and use.
-Composite materials, basic characteristics and classification. General characteristics of matrices. Geometry of reinforcements.
-Particle based composites, particle based composites with polymeric matrix, particle based composites with ceramic matrix, particle based composites with metallic matrix. Particle based dispersion-reinforced composites, particle based composites strengthened by single particles.
-Fibre composites, general characteristics of fibres, fibre composites with ceramic matrix, combination of phases and achieved marginal conditions. Process of crack bridging and strengthening of ceramic matrix with fibres.
-Polymeric materials, historical aspects. Polymerisation, poly-addition, poly-condensation. Plastic materials, elastomers, thermoset plastic materials, thermoplastics. Classification and characteristics of polymeric materials.
-Classification of rubbers, natural and synthetic rubber. Basic process of production of natural and synthetic rubber. Synthetic poly-isoprenes. Butadiene-styrene rubbers.
-Phenomenological foundations of viscoelasticity. Rheological models, Maxwell' model, Kelvin's (Voigt's) model.
- Fractures of polymeric materials.