[1] Steve Brunton. Physics Informed Machine Learning. Accessed: 2024-08-01.
2024. url: https://www.youtube.com/playlist?list=PLMrJAkhIeNNQ0BaKuBKY43k4xMo6NSbBa.
[2] ETH Zürich CAMLab. ETH Zürich — Deep Learning in Scientific Compu-
ting 2023. Accessed: 2024-08-01. 2024. url: https://www.youtube.com/
watch?v=y6wHpRzhhkA&list=PLJkYEExhe7rYY5HjpIJbgo-tDZ3bIAqAm.
[3] Zhongkai Hao et al. Physics-Informed Machine Learning: A Survey on Pro-
blems, Methods and Applications. 2023. arXiv: 2211.08064 [cs.LG]. url:
https://arxiv.org/abs/2211.08064.
[4] Stefan Kollmannsberger et al. Deep Learning in Computational Mechanics:
An Introductory Course. Springer Cham, 2021. isbn: 978-3-030-76586-6 .
doi: 10.1007/978-3-030-76587-3.
[5] Karet Pentil. PINN (Physics-Informed Neural Networks). Accessed: 2024-
08-01. 2021. url: https://www.youtube.com/playlist?list=PLXmYoJbJ848pkMm9NGZZKXUQJ8XWIXZX8
[6] Nils Thuerey et al. Physics-based Deep Learning. 2022. arXiv: 2109.05237 [cs.LG].
url: https://arxiv.org/abs/2109.05237.
[7] Genki Yagawa a Atsuya Oishi. Computational Mechanics with Deep Lear-
ning: An Introduction. Lecture Notes on Numerical Methods in Enginee-
ring and Sciences. Springer Cham, 2022. isbn: 978-3-031-11846-3 . doi:
10.1007/978-3-031-11847-0.
[8] M. Raissi, P. Perdikaris a G.E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 2019. doi: 10.1016/j.jcp.2018.10.045.
[9] Edward Small. An Analysis of Physics-Informed Neural Networks. arXiv:2303.02890 [cs.LG], 2023. url: https://arxiv.org/abs/2303.02890