Skip to main content
Skip header

Mathematics I

Summary

Linear algebra: vector spaces, determinants, matrices, systems of linear
equations. Differential calculus of function of one real independent variable:
function of one variable, elementary functions polynomial, rational,
exponential, logarithmic, trigonometric and circular, limit and
continuity of
a function, number e, differentiation, techniques of differentiation,
differential of a function, Taylor’s theorem, Taylor and Maclaurin polynomials,
Rolle’s theorem, the mean value theorem of the differential calculus, extreme
values of function, point of inflection, convex and concave function,
L’Hospital’s rule.Linear algebra: vector spaces, determinants, matrices,
systems of linear equations. Differential calculus of function of one real
independent variable: function of one variable, elementary functions 
polynomial, rational, exponential, logarithmic, trigonometric and
circular,
limit and continuity of a function, number e, differentiation, techniques of
differentiation, differential of a function, Taylor’s theorem, Taylor and
Maclaurin polynomials, Rolle’s theorem, the mean value theorem of the
differential calculus, extreme values of function, point of inflection, convex
and concave function, L’Hospital’s rule.

Literature

Burda, P. a kol.: Algebra a analytická geometrie (Matematika I), VŠB-TUO 1997.
Škrášek, J. a kol.: Základy aplikované matematiky I. SNTL, Praha 1986.
Láníček, J. a kol.: Cvičení z matematiky I. VŠB-TUO.
Dobrovská, V. a kol.: Cvičení z matematiky II. Skripta VŠB.

Advised literature

No advised literature has been specified for this subject.


Language of instruction čeština, čeština, čeština
Code 714-0301
Abbreviation MI
Course title Mathematics I
Coordinating department Department of Mathematics and Descriptive Geometry
Course coordinator Fiktivní Uživatel