Přednášky:
1. Číselné množiny. Reálná čísla. Rozšířená reálná osa.
2. Reálné funkce jedné reálné proměnné. Elementární funkce.
3. Posloupnosti reálných čísel. Limita posloupnosti.
4. Limita a spojitost funkce.
5. Diferenciál a derivace funkce.
6. Základní věty diferenciálního počtu. Taylorův polynom.
7. Vyšetřování průběhu funkcí.
8. Primitivní funkce a neurčitý integrál.
9. Metody integrace (per partes, substituce, rozklad na parciální zlomky).
10. Integrace speciálních tříd funkcí.
11. Určitý integrál. Integrál s proměnnou horní mezí.
12. Výpočet určitého integrálu.
13. Aplikace určitého integrálu.
14. Nevlastní integrály.
Cvičení:
1. Zkratky a termíny výrokové logiky. Množiny. Aplikace principu matematické indukce.
2. Funkce a její vlastnosti .
3. Prosté funkce, hledání inverzní funkce. Znázornění grafu funkce.
4. Aplikace vlastností elementárních funkcí při řešení rovnic a nerovnic a dalších úlohách.
5. Výpočty limit posloupností, diskuze pojmu limita funkce.
6. Techniky výpočtu limit funkcí.
7. Výpočet derivace funkce.
8. Konstrukce Taylorova polynomu a odhady zbytku po aproximaci funkce.
9. Aplikace derivace, diferenciálu a Taylorova polynomu ve fyzice, geometrii a numerické
matematice.
10. Řešení příkladů na průběh funkce.
11. Řešení příkladů z integrálního počtu pomocí metody per partes a substitučních metod.
12. Řešení úloh týkajících se rozkladu racionální lomené funkce na parciální zlomky.
13. Procvičování speciálních substitucí při integraci některých tříd funkcí.
14. Výpočet určitého integrálu. Aplikace.
1. Číselné množiny. Reálná čísla. Rozšířená reálná osa.
2. Reálné funkce jedné reálné proměnné. Elementární funkce.
3. Posloupnosti reálných čísel. Limita posloupnosti.
4. Limita a spojitost funkce.
5. Diferenciál a derivace funkce.
6. Základní věty diferenciálního počtu. Taylorův polynom.
7. Vyšetřování průběhu funkcí.
8. Primitivní funkce a neurčitý integrál.
9. Metody integrace (per partes, substituce, rozklad na parciální zlomky).
10. Integrace speciálních tříd funkcí.
11. Určitý integrál. Integrál s proměnnou horní mezí.
12. Výpočet určitého integrálu.
13. Aplikace určitého integrálu.
14. Nevlastní integrály.
Cvičení:
1. Zkratky a termíny výrokové logiky. Množiny. Aplikace principu matematické indukce.
2. Funkce a její vlastnosti .
3. Prosté funkce, hledání inverzní funkce. Znázornění grafu funkce.
4. Aplikace vlastností elementárních funkcí při řešení rovnic a nerovnic a dalších úlohách.
5. Výpočty limit posloupností, diskuze pojmu limita funkce.
6. Techniky výpočtu limit funkcí.
7. Výpočet derivace funkce.
8. Konstrukce Taylorova polynomu a odhady zbytku po aproximaci funkce.
9. Aplikace derivace, diferenciálu a Taylorova polynomu ve fyzice, geometrii a numerické
matematice.
10. Řešení příkladů na průběh funkce.
11. Řešení příkladů z integrálního počtu pomocí metody per partes a substitučních metod.
12. Řešení úloh týkajících se rozkladu racionální lomené funkce na parciální zlomky.
13. Procvičování speciálních substitucí při integraci některých tříd funkcí.
14. Výpočet určitého integrálu. Aplikace.