Přeskočit na hlavní obsah
Přeskočit hlavičku

Aplikovaná algebra

Anotace

1. Vektorový prostor (definice, příklady – matematické: Rn, Cn, funkce na čtverci a krychli, vlastnosti odvozené z axiomů, podprostory, závislost, báze podprostorů, souřadnice, změna báze a matice transformace). Hierarchické báze.
2. Ortogonalita v Rn (reálný skalární součin, příklady, SPD matice, Schwarzova nerovnost, velikost a úhel dvou vektorů, definice, příklady, ortogonální a ortonormální báze, Schmidtův proces, výpočet souřadnic, ortogonální matice). Aplikace: metoda sdružených směrů, aproximace v podprostoru I.
3. Ortogonalita v Cn (komplexní čísla a jejich representace, komplexní vektorové prostory, komplexní exponenciální funkce, exponenciální báze, výpočet souřadnic, unitární matice a unitární transformace, Parsevalova a Plancherelova rovnost)
4. Fourierova transformace a FFT (Fourierova báze, maticová representace, Fourierova transformace, vlastnosti, rychlý výpočet souřadnic – FFT, Haarovy wavelety) Aplikace: Identifikace hran, komprese obrazu.
5. Lineární zobrazení (definice, příklady, hodnost a defekt, matice zobrazení, změna matice při změně báze, řešitelnost soustav, inverzní a zobecněná inverzní matice)
6. Bilineární a kvadratické formy (definice, příklady, variační princip) Aplikace: Metoda nejmenších čtverců II, řešení nekonzistentních soustav, podmíněné extrémy
7. Vlastní čísla a vektory (definice, příklady, charakteristický polynom, determinant, stopa, Geršgorinova věta, důsledky).
8. Schurův rozklad a spektrální rozklad, odvození, maticový kalkul, příklady.
9. Stochastické matice, markovovské procesy
10. Page Rank, vlastní vektory a Google.
11. SVD a polární rozklad (odvození, zkrácený rozklad, geometrický význam). Důsledky a aplikace: Moore-Penroseova pseudoinverze, efektivní aproximace velkých matic, matematika image deblurring.
12. Optimalizace – QP, konvexita, KKT pro nerovnostní omezení, dualita pro konvexní úlohy QP. Příklad: Image registration, image deblurring.
13. SVM (opakování analytické geometrie, formulace, řešení s využitím duality)
14. Tensory a jejich representace. Aplikace: využití dodatečné informace pro čtení psaného textu

Povinná literatura

Zdenek Dostál, Lineární algebra, VŠB Ostrava 2000

Doporučená literatura

Milan Hladík, Lineární algebra(nejen)pro informatiky, MFF UK 2019 (pdf na https://kam.mff.cuni.cz/~hladik/LA/text_la_upd.pdf)

Luboš Motl, Miloš Zahradník : Pěstujeme lineární algebru. MFF UK 2011 (http://matematika.cuni.cz/zahradnik-pla.html)


Jazyk výuky čeština, angličtina
Kód 470-4201
Zkratka AA
Název předmětu česky Aplikovaná algebra
Název předmětu anglicky Applied Algebra
Garantující katedra Katedra aplikované matematiky
Garant předmětu prof. RNDr. Zdeněk Dostál, DSc.