Lectures:
Complex functions and mappings. Complex differentiation, contour integration and deforming the contour.
Complex series: power series, Taylor and Laurent series. Residue theorem. Applications.
Introduction to Fourier series. Orthogonal systems of functions. Generalized Fourier series. Applications.
Introduction to integral transforms. Convolution.
Laplace transform, fundamental properties. Inverse Laplace transform. Applications.
Exercises:
Practising of complex functions, linear and quadratic mappings.
Practising of complex differentiation, conformal mappings, contour integration and deforming the contour.
Examples of Taylor and Laurent series and applications.
Examples of orthogonal systems of functions, Fourier series and applications.
Practising of Laplace transform. Solution of differential equation.
Project:
One individual project on the topic on Fourier series.
Complex functions and mappings. Complex differentiation, contour integration and deforming the contour.
Complex series: power series, Taylor and Laurent series. Residue theorem. Applications.
Introduction to Fourier series. Orthogonal systems of functions. Generalized Fourier series. Applications.
Introduction to integral transforms. Convolution.
Laplace transform, fundamental properties. Inverse Laplace transform. Applications.
Exercises:
Practising of complex functions, linear and quadratic mappings.
Practising of complex differentiation, conformal mappings, contour integration and deforming the contour.
Examples of Taylor and Laurent series and applications.
Examples of orthogonal systems of functions, Fourier series and applications.
Practising of Laplace transform. Solution of differential equation.
Project:
One individual project on the topic on Fourier series.