Skip to main content
Skip header

Introduction to Finite Element Method

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code228-0237/01
Number of ECTS Credits Allocated5 ECTS credits
Type of Course Unit *Compulsory
Level of Course Unit *First Cycle
Year of Study *Third Year
Semester when the Course Unit is deliveredSummer Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
BRO12prof. Ing. Jiří Brožovský, Ph.D.
KON09doc. Ing. Petr Konečný, Ph.D.
Summary
In this subject there are introduce the basic principles of the Finite element method. There are introduced energy principles and their use in structural mechanics problems. The Ritz Method and its relations to the Finite Element Method is explained. Derivation of stiffness matrices of simple finite elements is given. Principles of computational model preparation and of result analysis are discussed. The practical part of the subject is based on preparation of simple computational code in a high-level computational language by students and on use of this code for solution of simple problems of structural mechanics.
Learning Outcomes of the Course Unit
Understanding of basic principles of the Finite Element Method. Ability to use of this method for preparation of simple computational codes. Ability to use this method for solution of basic problems of linear structural mechanics.
Course Contents
- Introduction, theory of elasticity in 3D.
- Energy principles, Ritz method.
- Introduction to Finite Element Method (FEM),
- Finite element for 1D problems.
- Finite element for plane problem.
- Finite element for thin slabs.
- Finite element for solids.
- Isoparametric finite elements - part 1.
- Isoparametric finite elements - part 2.
- FEM in structural dynamics.
- FEM in heat transfer problems.
= FEM in non=linear structural mechanics.
= FEM=based software.
Recommended or Required Reading
Required Reading:
ZIENKIEWICZ, O. C., Robert L. TAYLOR a J. Z. ZHU. The finite element method: its basis and fundamentals. Seventh edition. Amsterdam: Elsevier, Butterworth-Heinemann, 2013. ISBN 978-1856176330.

Russell C. Hibbeler, Structural Analysis (10th Edition), 736 pages, 2017, ISBN-13: 978-0134610672, ISBN-10: 0134610679.
BITTNAR, Zdenek a Jiří ŠEJNOHA. Numerické metody mechaniky. Praha: ČVUT, 1992. ISBN 80-01-00855-x.

Kolář, V., Kratochvíl, J., Leitner, F., Ženíšek, A. Výpočet plošných a prostorových konstrukcí metodou konečných prvků, SNTL, Praha, 1979

Russell C. Hibbeler, Structural Analysis (10th Edition), 736 pages, 2017, ISBN-13: 978-0134610672, ISBN-10: 0134610679.
Recommended Reading:
HUGHES, Thomas J. R. The finite element method: linear static and dynamic finite element analysis. Mineola, NY: Dover Publications, 2000. ISBN 978-0486411811.

Zienkiewicz, O. C., Taylor, R. L., Zhu: The Finite Element Method: Its Basics and Fundamentals, Butterworth-Heinemann, Burlinghton, 2005
COOK, Robert Davis. Concepts and applications of finite element analysis. 4th ed. New York, NY: Wiley, c2001. ISBN 978-0471356059.

MACHALOVÁ, Jitka a Horymír NETUKA. Metoda konečných prvků. Olomouc: Univerzita Palackého v Olomouci, 2015. ISBN 978-80-244-4645-5.

Kolář V., Němec I., Kanický V. FEM Principy a praxe metody konečných prvků, Computer Press, Praha, 1997
Planned learning activities and teaching methods
Lectures, Tutorials
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Credit and ExaminationCredit and Examination100 (100)51
        CreditCredit35 18
        ExaminationExamination65 33