## Descriptive Geometry

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code Number of ECTS Credits Allocated Type of Course Unit * Level of Course Unit * Year of Study * 230-0241/01 5 ECTS credits Compulsory First Cycle First Year Winter Semester Face-to-face Czech, English There are no prerequisites or co-requisites for this course unit CER0007 Mgr. František Červenka The basic properties of the projection. Central collineation, perspective affinity. The mapping projection, the Monge’s projection, the orthogonal axonometry. Elementary surfaces and solid. Circular helix and moving trihedral. Surfaces of revolution, quadrics of revolution. The ruled surfaces, the evelopable and especially the skew ruled surfaces. Spiral surfaces. • to train development of space abilities • to handle by different types of projection methods, to understand to their principles, to be familiar with their properties, advantages and disadvantages • to acquaint with geometric characteristics of curves and surfaces that are used in technical practice of a given specialization 1. Parallel projection. Improper objects. Axial affinity in plane. 2. Monge projection: representation of point, line and plane, the basic position problems. 3. Monge projection: the basic metric problems, displaying of circle. 4. Orthogonal axonometry: principles and representation of point, line and plane, the basic position problems. 5. Orthogonal axonometry: object in coordinate or parallel plane, notch method. 6. Curves - the creation, distribution, movement frame. Circular helix. 7. Surfaces: describing, classification, tangent plane and normal. 8. Screw surfaces - ruled, cyclical. 9. Surfaces of revolution. Second degree surfaces of revolution. 10. Ruled surfaces. Developable and skew ruled surfaces. 11. One-sheet hyperboloid of rotation. 12. Hyperbolic paraboloid. Conoids. 13. Other surfaces suitable for civil engineering. 14.Reserve. Vavříková, E.: Descriptive Geometry. VŠB-TU, Ostrava 2005. ISBN 80-248-1006-9. Watts,E.F. - Rule,J.T.: Descriptive Geometry, Prentice Hall Inc., New York 1946. http://mdg.vsb.cz/portal/dg/DeskriptivniGeometrie.pdf Černý, J. – Kočandrlová, M.: Konstruktivní geometrie. Praha, ČVUT 1998. Doležal, M.: Základy deskriptivní a konstruktivní geometrie, díl 3.: Mongeovo promítání. Ostrava, VŠB – TU 1997. Poláček, J.: Základy deskriptivní a konstruktivní geometrie, díl 4.: Pravoúhlá axonometrie. Ostrava, VŠB – TU 1996. http://mdg.vsb.cz/portal/dg/DeskriptivniGeometrie.pdf Doležal, M. – Poláček, J.: Základy deskriptivní a konstruktivní geometrie, díl 5: Křivky a plochy technické praxe. Ostrava, VŠB – TU 1999. Ryan, D. L.: CAD/CAE Descriptive Geometry. CRC Press 1992. Pare, Loving, Hill: Deskriptive geometry, London, 1965. http://mdg.vsb.cz/portal/ Urban, A.: Deskriptivní geometrie I, II. Praha, SNTL 1965, 1967. Piska, R. – Medek, V.: Deskriptivní geometrie I, II. Praha, SNTL 1966. Drábek, K. - Harant, F. - Setzer, O.: Deskriptivní geometrie I, II. Praha, SNTL 1978, 1979. Plocková, E. - Řehák, M.: Sbírka řešených příkladů z DG a KG, díl 3. – Mongeovo promítání. Ostrava, VŠB - TU 1995. Doležal, J. - Poláček, J.: Pravoúhlá axonometrie - sbírka řešených úloh. Ostrava, VŠB - TU 2013. ISBN 978-80-248-2989-0. Doležal, M. - Poláček, J. - Tůma, M.: Sbírka řešených příkladů z DG a KG, díl 5. - Rotační a šroubové plochy. Ostrava, VŠB – TU 1995. Dudková, K. - Hamříková, R.: Kuželosečky, kolineace. Ostrava, VŠB - TU 2005. http://mdg.vsb.cz/portal/ Lectures, Individual consultations, Tutorials, Other activities Credit and Examination Credit and Examination 100 (100) 51 Credit Credit 20 5 Examination Examination 80 (80) 30 Písemná zkouška Written examination 60 25 Ústní zkouška Oral examination 20 5