Skip to main content
Skip header

Numerical Methods III

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code470-4505/03
Number of ECTS Credits Allocated6 ECTS credits
Type of Course Unit *Optional
Level of Course Unit *Second Cycle
Year of Study *Second Year
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
LUK76doc. Ing. Dalibor Lukáš, Ph.D.
Summary
In the first part of the course we shall deal with mathematical modelling in elasticity, the other part treats fluid dynamics. Both parts start with deriving a mathematical model from physical principles. Then variational formulations are introduced, which are solved by the finite element method afterwards.
Learning Outcomes of the Course Unit
The aim of the course is to introduce advanced topis of numerical analysis for partial differential equations. In the first part we shall deal with mathematical modelling in elasticity, the other part treats fluid dynamics. Both parts start with deriving a mathematical model from physical principles. Then variational formulations are introduced, which are solved by the finite element method afterwards.
Course Contents
Lectures:

1. Elasticity - kinematics
2. Elasticity - equilibrium
3. Elasticity - constitutive laws, Hooke's law
4. Elasticity - displacement variational formulation
5. Elasticity - Korn's inequalities, finite element method
6. Elasticity - mixed formulations, locking effect
7. Fluid dynamics - physical properties of fluids
8. Fluid dynamics - kinematics
9. Fluid dynamics - Stokes and Navier-Stokes equations
10. Fluid dynamics - variational formulation
11. Fluid dynamics - finite element method
12. Fluid dynamics - apriori and aposteriori error estimates
13. Fluid dynamics - singularities
14. Fluid dynamics - numerical stability

Exercises:

1. Elasticity - kinematics
2. Elasticity - equilibrium
3. Elasticity - constitutive laws, Hooke's law
4. Elasticity - displacement variational formulation
5. Elasticity - Korn's inequalities, finite element method
6. Elasticity - mixed formulations, locking effect
7. Fluid dynamics - physical properties of fluids
8. Fluid dynamics - kinematics
9. Fluid dynamics - Stokes and Navier-Stokes equations
10. Fluid dynamics - variational formulation
11. Fluid dynamics - finite element method
12. Fluid dynamics - apriori and aposteriori error estimates
13. Fluid dynamics - singularities
14. Fluid dynamics - numerical stability

Projects:
Finite element method for a fluid dynamic problem.
Finite element method for an elasticity problem.
Recommended or Required Reading
Required Reading:
Braess, D.: Finite elements. Cambridge University Press, 2001

Feistauer, M.: Theory and numerics for problems of fluid dynamics. MATFYZ UK Praha, 2006
Braess, D.: Finite elements. Cambridge University Press, 2001

Feistauer, M.: Theory and numerics for problems of fluid dynamics. MATFYZ UK Praha, 2006
Recommended Reading:
Quarteroni, A., Valli, A.: Numerical approximation of PDEs. Springer, 2008.
Quarteroni, A., Valli, A.: Numerical approximation of PDEs. Springer, 2008.
Planned learning activities and teaching methods
Lectures, Tutorials, Project work
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Credit and ExaminationCredit and Examination100 (100)51
        CreditCredit30 15
        ExaminationExamination70 21