Skip to main content
Skip header

Metal Forming

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code345-0308/05
Number of ECTS Credits Allocated5 ECTS credits
Type of Course Unit *Compulsory
Level of Course Unit *First Cycle
Year of Study *Third Year
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
PAS091Ing. Martin Pastrňák, Ph.D.
HIL0011Ing. Ondřej Hilšer, Ph.D.
Summary
Physical principle of plastic deformation.Fundamental theory of dislocations. Deformation work, strain hardening, stress-strain curves. Ductility, formability,
strengthening. Physical factors of plastic deformation - temperature, strain rate,friction. Forming such a system. Classification of metal forming technology.
Forming machines - classification, characteristics. Tension state, the dependence between stress and strain. The fundamental tests to determine deformation resistance and formability. Laws of plasticity. Simulated methods in forming processes. Method of work strain. The method of thin sections, experimental methods, modelling of technological processes. Fundamental analysis of forming technologies. Upsetting betwen the rigid parallel planes. Drop forging. Bulk forming. Shet forming. Forward cold and hot extrusion. Backward extrusion, deformation state. Drawing rotation and non-rotation shape, the state of deformation.
Mechanical and hydraulic machines. Forming tools. Non conventional technologies. Orbital forming. Semisolid forming of steels and Al alloys. Fundamental superplastic forming. Powder Metallurgy as a way of production of nanomaterials. Severe plastic deformation. Methods of production nanomaterials and their microstructure. Technology to production of ultra-fine grained materials. Metallic glasses as new type of materials with unique physical and mechanical. properties. Titanium alloys, structure, properties and industrial application. New magnesium light alloys for structural and medical applications.
Learning Outcomes of the Course Unit
The aim of the course is to acquire knowledge:
- the physical principle of plastic deformation, plasticity concepts, formability,
deformation work and the influence of physical and material parameters on
the plastic deformation
- the new unconventional forming technologies - superplastic forming,
orbital forming, powders forming, new technology to production of
fine-grained materials, severe plastic deformation
Skills:
- classify the stress-strain curves, cold and hot forming processes, the material aspects, plasticity conditions and laws plastic deformation
- plastometric perform materials testing
competencies:
- to select appropriate forming technologies to production of machine parts, classified
parameters and aspects influencing these choice
- compile and realize technological processes
- to propose the construction of forming tools and equipment
Course Contents
The aim of the course is to acquire knowledge:
- the physical principle of plastic deformation, plasticity concepts, formability,
deformation work and the influence of physical and material parameters on
the plastic deformation
- the new unconventional forming technologies - superplastic forming,
orbital forming, powders forming, new technology to production of
fine-grained materials, severe plastic deformation
Skills:
- classify the stress-strain curves, cold and hot forming processes, the material aspects, plasticity conditions and laws plastic deformation
- plastometric perform materials testing
competencies:
- to select appropriate forming technologies to production of machine parts, classified
parameters and aspects influencing these choice
- compile and realize technological processes
- to propose the construction of forming tools and equipment
Recommended or Required Reading
Required Reading:
Sluzalec, A.. Theory of Metal Forming Plasticity: Classical and Advanced Topics, Springer, 2003, ISBN 3-540-40648-4
Schuler GmbH. Metal Forming Handbook. Springer 1998, ISBN 3-540-61185-1
Tschätsch, H. Metal Forming Practise: Processes - Machines - Tools, Springer, Wiesbaden 2005, ISBN 978-3-642-06977-2
Hosford, W., F., Caddel, R., M. Metal Forming: Mechanics and Metallurgy, Cambridge 2007, ISBN 978-0-521-88121-0
RUSZ, S.: Tváření I, skripta VŠB - TU Ostrava, 2003.
HRUBÝ, J., RUSZ, S., ČADA, R.: Strojírenské tváření, skripta VŠB- TU Ostrava, 2006.
RUSZ, S.: Nekonvenční a nově se vyvíjející technologie plastické deformace, sylaby, VŠB - TU Ostrava, 2009.
RUSZ, S.: Tvařitelnost materiálů, sylaby, Katedra mechanické technologie, VŠB - TU Ostrava, 1997
PETRUŽELKA, J.: Úvod do tváření I, II, skripta VŠB Ostrava, 2001.
BŘEZINA, R.: Speciální technologie - tváření, návody, VŠB Ostrava, 1987.
ČABELKA, I.: Mechanická technologia, SAV Bratislava, 1967.
PETRUŽELKA, J.: Tváření, sylaby přednášek, VŠB - TU Ostrava, 2000.
ALTAN, T. aj.: Metal forming Fundamentals and Apliciations, 1983, ASM
International, Metals Park, OH.
KOBAJASHI, S. aj.: Metal Forming and the Finite Element Method, 1989, Oxford
University Press, Oxford.
Recommended Reading:
Schuler GmbH. Metal Forming Handbook. Springer 1998, ISBN 3-540-61185-1
Tschätsch, H. Metal Forming Practise: Processes - Machines - Tools, Springer, Wiesbaden 2005, ISBN 978-3-642-06977-2
Hosford, W., F., Caddel, R., M. Metal Forming: Mechanics and Metallurgy, Cambridge 2007, ISBN 978-0-521-88121-0
ČADA, R. Technologie I: Zákony plastické deformace kovů, dělení materiálu, slévání: skriptum. 1. vyd. Ostrava: VŠB-TU Ostrava, 2007. 75 s., ISBN 978-80-248-1274-8.
ČADA, R. Technologie tváření a slévání: Objemové tváření zatepla, nekonvenční způsoby tváření, plasty: skriptum. 1. vyd. Ostrava: VŠB-TU Ostrava, 2010. 80 s., ISBN 978-80-248-2273-0.
ELFMARK, J. Tváření kovů, SNTL Praha, 1. vyd., 1992, 524 s., ISBN 8003006511
Planned learning activities and teaching methods
Lectures, Tutorials, Project work
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Graded exercises evaluationGraded credit100 (100)51
        ProgramySemestral project50 25
        Test 1Written test15 8
        Test 2Written test15 8
        Test 3Written test15 8
        Aktivní účast ve cvičeníchOther task type5 2