Skip to main content
Skip header

Classical Methods of Solution of Partial Differential Equations

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code310-4001/01
Number of ECTS Credits Allocated10 ECTS credits
Type of Course Unit *Choice-compulsory
Level of Course Unit *Third Cycle
Year of Study *
Semester when the Course Unit is deliveredWinter, Summer Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
KUC14prof. RNDr. Radek Kučera, Ph.D.
Summary
Fourier series: orthogonal functions, Fourier coefficients, even and odd
functions, convergence of the Fourier series, complex form, solution of second
order linear differential equations.
Partial differential equations: general discussion, first-order and second-
order
partial differential equations (initial and boundary conditions, methods of
solution), second-order linear partial differential equations (method of the
characteristics, method of separation of variables), the wave equation, the
heat-conduction equation, the Laplace equation, Maxwell's equations.
Learning Outcomes of the Course Unit
Main study goals:
(i) to be acquainted with actual progress in this mathematical discipline,
(ii) to extend needed theoretical knowledge with emphasized orientation to its applicability,
(iii) to increase communication ability of specialists in different branches.
With regard to professional orientation of students learning themes modification is offered to fulfill presented aims.
Course Contents
Syllabus of lecture
1. Fourier series: periodic functions, Fourier coefficients, functions of the period 2 PI, function of the period T, even and odd functions
2. Even and odd functions, half - range cosine and sine series, convergence of Fourier series
3. Solution of 2nd order linear differential equations with constant coefficients by Fourier series
4. Partial differential equations: general discussion
5. Methods of solutions of partial differential equations of the first order
6. Methods of solutions of partial differential equations of the second order
7. Fourier´s method of separation
8. 2nd order partial linear differential equations
9. Canonical form of 2nd order partial linear differential equations
10. Laplace equation: separated solutions, boundary conditions
11. Solution of the one-dimensional wave equation: d’Alembert solution, method of the
separation of variables,
12. Solution of a boundary problem
13. Solution of the heat-conduction: one dimensional heat conduction equation, separation method.
14. Reserve
Recommended or Required Reading
Required Reading:
James, G.: Advanced Modern Engineering Mathematics. Addison-Wesley, 1993. ISBN 0-201-56519-6
Drábek, P. - Holubová, G.: Parciální diferenciální rovnice. http://mi21.vsb.cz
Kufner, A. - Kadlec, J.: Fourierovy řady. Academia, Praha 1969.
James, G.: Advanced Modern Engineering Mathematics. Addison-Wesley, 1993. ISBN 0-201-56519-6
Recommended Reading:
Strauss, W.A.: Partial differential equations: an introduction. New York: Wiley, 1992. ISBN 0-471-54868-5
Franců, J.: Parciální diferenciální rovnice. Akademické nakladatelství CERM, Brno 2003. ISBN 80-214-2334-X
Drábek, P. – Holubová, G.: Parciální diferenciální rovnice: úvod do klasické teorie. Západočeská univerzita, Plzeň 2001. ISBN 80-7082-766-1
Míka, S. – Kufner, A.: Parciální diferenciální rovnice I : stacionární rovnice. SNTL, Praha 1983.
Ošťádalová, E. a kol.: Parciální diferenciální rovnice. Skriptum VŠB Ostrava, 1999.
Planned learning activities and teaching methods
Lectures, Individual consultations, Tutorials, Project work
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
ExaminationExamination