Skip to main content
Skip header

Biorobotics in Medicine

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code354-0645/01
Number of ECTS Credits Allocated4 ECTS credits
Type of Course Unit *Compulsory
Level of Course Unit *Second Cycle
Year of Study *Second Year
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
BOB0001prof. Ing. Zdenko Bobovský, PhD.
Summary
Biorobotic devices in medicine include rehabilitation robotic devices and biorobotic prostheses. These biorobotic health care facilities are an important area in helping people after injuries or amputation of the upper or lower limb. Robotics for healthcare rehabilitation are both stationary and mobile applications. At present, it is an area that has marked a significant development in the world and in the Czech Republic. The aim of the course is to acquaint students with biorobotic prostheses and robotic devices for rehabilitation, their properties and parameters and practical applications. They will also be acquainted with design procedures of these devices. The graduate of the course will gain an overview in the field of applications of biorobotic prosthetic devices with a focus on rehabilitation and the ability to design these devices with regard to the requirements of the applicable legislation.
Learning Outcomes of the Course Unit
The aim of the course is to acquaint students with the basic classification of biorobotic devices used in medicine, their properties and requirements placed on them. Graduates of this course will acquire not only knowledge of biorobotic devices, but will also be able to select them for rehabilitation and prosthetic replacements.
Course Contents
Course syllabus:
1. Introduction to biorobotic devices in medicine, their classification, properties, application examples.
2. General requirements for construction of biorobotic devices in medicine and parameters.
3. Biorobotic prostheses of upper and lower limbs, classification, requirements, classification.
4. Requirements connected with practical application of upper and lower limb prostheses.
5. Biorobotic exoskeletons, construction, requirements, classification.
6. General requirements for construction and parameters of biorobotic devices in rehabilitation.
7. Biorobotic mobile devices in medicine - classification, classification, requirements.
8. Biomechanical principles of mobility subsystem of mobile robotic devices in medicine.
9. Service biorobotic devices in medicine - classification, classification, requirements.
10. Biorobotic facilities facilitating the learning process for people with disabilities - classification, classification, requirements.
11. Risk analysis of biorobotic facilities facilitating the learning process for people with disabilities and current legislation.
12. Current applications of biorobotic devices in medicine in our country and in the world.
13. Special biorobotic devices in medicine.
14. Future vision of biorobotic devices in medicine.

Syllabus of tutorials:
1. Assignment of a project for processing a given service task associated with the application of biorobotic equipment in medicine.
2. Performing a search for a given task.
3. Analysis of legislation and risks related to the practical implementation of the service task.
4. Detailed description of the service task.
5. Designing a suitable biorobotic device for the selected service task.
6. Implementation of biorobotic equipment into selected service task.
7. Preparation of technical report according to the teacher's request.
8. Defense and submission of the project.
Recommended or Required Reading
Required Reading:
Yunhui, L., Dong, S. Biologically Inspired Robotics. CRC Press Taylor & Francis Group, 2019, pp 340. ISBN 9780367381783.
Encarnacao, P. Robotic Assistive Technologies. Taylor & Francis Ltd, 2017, pp. 388. ISBN 9781498745727.
Xie, S. Advanced Robotics for Medical Rehabilitation. Springer International Publishing AG, 2016, pp. 343. ISBN 9783319344195.
Kárník, L., Marcinčin, J. N. Biorobotická zařízení. Opava: MÁRFY SLEZSKO, 1999. 184 s. ISBN 80-02746-0-9.
Yunhui, L., Dong, S. Biologically Inspired Robotics. CRC Press Taylor & Francis Group, 2019, pp 340. ISBN 9780367381783.
Encarnacao, P. Robotic Assistive Technologies. Taylor & Francis Ltd, 2017, pp. 388. ISBN 9781498745727.
Xie, S. Advanced Robotics for Medical Rehabilitation. Springer International Publishing AG, 2016, pp. 343. ISBN 9783319344195.
Recommended Reading:
Hooman, S. Cognitive Robotics. CRC Press Taylor & Francis Group, 2015, pp 220. ISBN 9781482244564.
Wynsberghe, V. Healthcare Robots. Taylor & Francis Ltd, 2015, pp. 166. ISBN 1472444337.
Mingming, Z. Soft Robots for Healthcare Applications. Institution of Engineering and Technology, 2017, pp. 230. ISBN 9781785613111.
Kárník, L., Knoflíček, R., Marcinčin, J. N. Mobilní roboty. Opava: MÁRFY SLEZSKO, 2000. 210 s. ISBN 80-902746-2-5.
Hooman, S. Cognitive Robotics. CRC Press Taylor & Francis Group, 2015, pp 220. ISBN 9781482244564.
Wynsberghe, V. Healthcare Robots. Taylor & Francis Ltd, 2015, pp. 166. ISBN 1472444337.
Mingming, Z. Soft Robots for Healthcare Applications. Institution of Engineering and Technology, 2017, pp. 230. ISBN 9781785613111.
Planned learning activities and teaching methods
Lectures, Tutorials, Project work
Assesment methods and criteria
Task TitleTask TypeMaximum Number of Points
(Act. for Subtasks)
Minimum Number of Points for Task Passing
Credit and ExaminationCredit and Examination100 (100)51
        CreditCredit40 20
        ExaminationExamination60 31