Skip to main content
Skip header

ECTS Course Overview



Medical Imaging Systems I

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code450-4073/02
Number of ECTS Credits Allocated3 ECTS credits
Type of Course Unit *Optional
Level of Course Unit *Second Cycle
Year of Study *
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionEnglish
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
CER275prof. Ing. Martin Černý, Ph.D.
Summary
The subject is focused on physical principles, structure and properties of medical imaging systems such as RTG, UZV, CT, MR, PET, SPECT, thermography, electrical impedance tomography. The subject deals with deeper physical principles and concrete realization of imaging systems.
Learning Outcomes of the Course Unit
Student will be able to clarify physics principles of medical imaging systems after graduation. He will be able to interpret their design and propose solutions to detected failures.
Course Contents
Lectures:
1. X-rays - physical principles, X-ray spectrum, interaction with tissues, x-ray tube, x-ray tube structure, electrical circuits necessary for x-ray tubes.
2. X-ray detectors - physical principles, technical and electrical properties, construction. Safety precautions to prevent the undesirable effects of X-rays on the patient, staff and surroundings. Clinical use.
3. Computer tomography (CT) - physical principles, construction of CT device.
4. Magnetic resonance - physical principles, relaxation times, magnetization measurement methods.
5. Magnetic resonance - spatial coding, gradients, resolution, contrast, RF coil, sequences
6. Magnetic resonance - device design, coil for MRI - design. clinical use of MRI.
7. Functional magnetic resonance - principles, clinical use.
8. SPECT - physical principles, design, SPECT quality assessment.
9. PET - The principle of PET emission tomography. Design of PET systems. Quality assessment of PET systems.
10. Infrared imaging systems (IRZS), physical principles, types of sensors, construction, quality assessment.
11. Ultrasound Imaging Systems (UZV) - Physical Principles, Doppler Phenomena, Focusing.
12. UZV - Diagnostic UZV Structure, Detailed analysis of diagnostic UZV components.
13. UZV - Image Quality Assessment, Medical Interpretation of Images.
14. Electrical impedance tomography.

laboratory Exercises:

1. X-rays - computational exercises on physical principles and design of el. circuit. for rentgents.
2. Computer tomography - work with a CT simulator. Acquisition of images.
3. Magnetic resonance - physical pricips, image simulation and reconstruction
4. Magnetic Resonance - Examination Sequences - Simulation
5. PET and SPECT - Physical Principles, Computational Exercises.
6. UZV - Work with diagnostic UZV, phantom, evaluation of image quality.
7. UZV detectors - properties - laboratory exercises.
Recommended or Required Reading
Required Reading:
WEBB, Andrew R. Introduction to biomedical imaging. Hoboken: Wiley, c2003. ISBN 0-471-23766-3.

OPPELT, Arnulf, ed. Imaging systems for medical diagnostics: fundamentals, technical solutions and applications for systems applying ionizing radiation, nuclear magnetic resonance and ultrasound. Erlangen: Publicis Corporate Publishing, 2005. ISBN 3-89578-226-2.
DRASTICH, Aleš. Netelevizní zobrazovací systémy. Brno: Vysoké učení technické, 2001. Učební texty vysokých škol. ISBN 80-214-1974-1.

DRASTICH, Aleš. Tomografické zobrazovací systémy. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a informatiky, Ústav biomedicínského inženýrství, 2004. ISBN 80-214-2788-4.
Recommended Reading:
HOSKINS, P. R., Kevin MARTIN a Abigail THRUSH, ed. Diagnostic ultrasound: physics and equipment. Second edition. Cambridge: Cambridge University Press, 2010. ISBN 978-0-521-75710-2.

BERNSTEIN, Matt A., Kevin Franklin KING a Ziaohong Joe ZHOU. Handbook of MRI pulse sequences. Burlington: Elsevier/Academic Press, c2004. ISBN 0-12-092861-2.

HASHEMI, Ray H., William G. BRADLEY a Christopher J. LISANTI. MRI: the basics. 3rd ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, c2010. ISBN 978-1-60831-115-6.
ZUNA, Ivan a Lubomír POUŠEK. Úvod do zobrazovacích metod v lékařské diagnostice. Praha: Vydavatelství ČVUT, 2002. ISBN 80-01-02152-1.

FERDA, Jiří, Hynek MÍRKA, Jan BAXA a Alexander MALÁN. Základy zobrazovacích metod. Praha: Galén, 2015. ISBN 978-80-7492-164-3.
Planned learning activities and teaching methods
Lectures, Individual consultations, Experimental work in labs
Assesment methods and criteria
Tasks are not Defined