Skip to main content
Skip header

Faculty of Electrical Engineering and Computer Science

ECTS Course Overview



Graph Algorithms and Complex Networks

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code460-4055/01
Number of ECTS Credits Allocated4 ECTS credits
Type of Course Unit *Optional
Level of Course Unit *Second Cycle
Year of Study *
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
OH140RNDr. Eliška Ochodková, Ph.D.
Summary
The goal is to acquaint students with complex networks, the area with a broad interdisciplinary overlap. Complex networks are a real wide area network (technological, informational, social and biological) whose characteristics, individual models and the development is the sstudy subject. The main subject areas of interest are the types of complex networks, efficient algorithms for network analysis, mathematical models of networks, generative models and dynamic processes in networks. Because the network is modeled as a graph, an essential part of the course is a repeatition or supplement of necessary mathematical tools from graph theory, linear algebra and statistics.
Learning Outcomes of the Course Unit
After graduation student will be able to:
1. For solving given problems choose proper graph algorithms and implemnt it.
2. Experiment with chosen datasets and analyze achieved results.
3. Interpret experiments results and design possible modifications of used algorithms.
4. Summarize properties of real networks represented by used dataset.
5. Cooperate on project.
Course Contents
1. Introduction. Complex networks and their types. Empirical studies of complex networks.
2. Properties of networks.
3. Computer network representation.
4. Mathematical foundations of complex networks.
5. Graph theory and its applications in the field of complex networks.
6. Measurements and metrics for network analysis.
7. Fundamental algorithms.
8. Network model - a random network, Watts-Strogatz model.
9. Network model - scale-free network.
10. Models of network evolution.
11. Detection communities.
12. Processes in Networks - percolation, spreading of information.
13. Visualization of networks, algorithms used.
14. Software for work with complex networks.
Recommended or Required Reading
Required Reading:
1. M. E. J. Newman: The structure and function of complex networks, SIAM Reviews, 45(2): 167-256, 2003
2. A.L. Barabasi: Scale Free Networks
3. S. H. Strogatz: Exploring Complex Networks
4. R. Albert and L.A. Barabasi: Statistical Mechanics of Complex Networks, Rev. Mod. Phys. 74, 47-97 (2002).
7. McHugh J. A.: Algorithmic graph theory, PRENTICE HALL, 1990.
8. Cormen T.H., Leiserson Ch.E., Rivest R.L.: Introduction to algorithms, The MIT Press, 1990.
9. Bang-Jensen J., Guitn G.: Digraphs, Theory, Algorithms and Applications, Springer 2002
10. Jungnickel D.: Graphs, Networks and Algorithms, Springer 2005
1. Barabási A.-L.: V pavučině sítí, Paseka 2005
2. M. E. J. Newman: The structure and function of complex networks, SIAM Reviews, 45(2): 167-256, 2003
3. A.L. Barabasi: Scale Free Networks
4. S. H. Strogatz: Exploring Complex Networks
5. R. Albert and L.A. Barabasi: Statistical Mechanics of Complex Networks, Rev. Mod. Phys. 74, 47-97 (2002).
6. Ochodková E.: Výuková opora předmětu (grant FR 1719/2003)
7. Večerka A.: Grafy a grafove algoritmy, PřF UP Olmouc, 2007
8. Nešetřil J.: Teorie grafů, SNTL, Praha, 1979.
9. Plesník J.: Grafové algoritmy, VEDA, Bratislava, 1983.
10. Demel J.: Grafy, SNTL, Praha, 1989
11. McHugh J. A.: Algorithmic graph theory, PRENTICE HALL, 1990.
12. Unčovský L. a kol.: Modely sieťovej analýzy, ALFA, Bratislava, 1991.
13. Cormen T.H., Leiserson Ch.E., Rivest R.L.: Introduction to algorithms, The MIT Press, 1990.
14. Kučera L.: Kombinatorické algoritmy, SNTL Praha, 1991
15. Bang-Jensen J., Guitn G.: Digraphs, Theory, Algorithms and Applications, Springer 2002
16. Jungnickel D.: Graphs, Networks and Algorithms, Springer 2005
Recommended Reading:
1. The Stony Brook Algorithm Repository, http://www.cs.sunysb.edu/~algorith/
2. Journal of Graph Algorithms and Applications, ISSN: 1526-1719, http://www.cs.brown.edu/publications/jgaa/
1. The Stony Brook Algorithm Repository, http://www.cs.sunysb.edu/~algorith/
2. Journal of Graph Algorithms and Applications, ISSN: 1526-1719, http://www.cs.brown.edu/publications/jgaa/
Planned learning activities and teaching methods
Lectures, Tutorials, Project work
Assesment methods and criteria
Tasks are not Defined