* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code | 619-3016/02 | |||||
---|---|---|---|---|---|---|

Number of ECTS Credits Allocated | 7 ECTS credits | |||||

Type of Course Unit * | Optional | |||||

Level of Course Unit * | Second Cycle | |||||

Year of Study * | ||||||

Semester when the Course Unit is delivered | Summer Semester | |||||

Mode of Delivery | Face-to-face | |||||

Language of Instruction | Czech, English | |||||

Prerequisites and Co-Requisites | Course succeeds to compulsory courses of previous semester | |||||

Name of Lecturer(s) | Personal ID | Name | ||||

DOB30 | prof. Ing. Jana Dobrovská, CSc. | |||||

SME06 | prof. Ing. Bedřich Smetana, Ph.D. | |||||

Summary | ||||||

Thermodynamics of solution – non-electrolyte solutions (empirical laws, ideal, dilute and real solutions, partial molar quantities, thermodynamics functions and models) colligative properties, phase diagrams - binary liquid miscible and immiscible mixtures. Properties of electrolytes (acid, base, salt, buffer) and electrochemical heterogeneous systems (electrodes, galvanic cells). Description and application of electrochemical methods.
Thermodynamics of real gas mixtures. | ||||||

Learning Outcomes of the Course Unit | ||||||

- to observe and describe thermodynamic conditions of phase equilibrium in
multiphase and multicomponent systems - to define solutions - experience laws, thermodynamic quantities and models of solutions - to determine partial molar quantities - to analyse phase diagrams of binary liquid mixtures - to apply thermodynamic quantities to electrolyte solutions - to outline usage possibilities of electrochemical systems - description of electrochemical systems, electrodes, electrolysis, galvanic cells - to apply obtained theoretical knowledge in tutorials and laboratory and on selected processes of chemical practice | ||||||

Course Contents | ||||||

1. Solutions and their classification. Nonelectrolyte solutions, ideal and
real solutions. Experience laws - Raoult´s and Henry´s laws. Non-ideal solutions, definition of the standard states for component in binary solutions, deviation from Raoult´s and Henry´s law, activity and activity coefficient. Multicomponents systems, activities and interaction coefficients. 2. Thermodynamic functions of solutions. Partial molar quantities. Differential and integral quantities. Mixing and excess quantities. Determination of partial molar quantities. Thermodynamic models of solutions – ideal, real, regular and athermal solution. The Gibbs-Duhem equation, applications. The dependence of the activity and the activity coefficient on temperature. 3. Colligative properties of nonelectrolyte solutions. Vapor pressure lowering (decrease in the boiling pressure at constant temperature), boiling point elevation (ebullioscopy), freezing point depression (cryoscopy), osmotic pressure. Phase diagrams of two-component liquid mixtures (isothermal diagram, isobaric diagram, y-x diagram, miscible liquids, partially miscible liquids, totally immiscible liquids). 4. Distillation, simple distillation, rectification, azeotropic points, azeotropic mixtures, explaining the deviations. Phase diagram of the liquid ternary systems. Three-component system containing two liquid phases, Nernst’s distribution law, extraction. Electrochemistry, basic terms. Electrolytes and ions, strong electrolyte, weak electrolyte, ion charge number, theory of electrolytic dissociation, dissociation constant, degree of dissociation. 5. Electrolysis and its significance, Faraday’s laws, reactions occurring during electrolysis, concentration changes during electrolysis. Coulometers. Cation and anion transport numbers, cation and anion mobility, Hittorf method of determining transport numbers. 6. Electric conductivity of electrolytes. Specific and molar electric conductivity, concentration dependence Molar conductivity at infinite dilution, theory of ionic conductivity, Kohlrausch’s law of independent migration of ions. Conductivity measurement and its utilization - Ostwald´s dilution law, determination of solubility product, conductometric titrations. 7. Strong electrolyte. Deviation from ideal state. Osmotic coefficient. Mean molality, concentration, activity and activity of electrolyte. Ionic strength of a solution, Debye-Hückel limiting law, activity coefficients at higher concentrations. Conduction coefficient, electrophoretic effect, relaxation effect. Solubility of sparingly soluble salts, solubility product. 8. Equilibrium and dissociation in solutions of weak electrolytes. Ionic product of water. Theory of acids and bases (Brönsted´s, Arrhenius and Lewis theory). Classification of solvents. Determination of pH, acidobasic indicators. Dissociation of week monobasic acids and bases. Hydrolysis of the salt. Buffer solutions, Henderson–Hasselbalch equation, buffer capacity, signification. 9. Electrodes. Electrochemistry potentials - electrode and redox potentials, liquid junction and membrane potentials. Classification of half-cells, description, function, utilization of electrodes - first-type electrodes, second-type electrodes, reduction-oxidation electrodes, ion-selective electrodes. 10. Galvanic cells, classification, electromotive force of the cell and its measurement. Chemical cells (cells with transference, cells without transference), electrode and electrolyte and concentration cells (cells with transference, cells without transference). Electromotive force and thermodynamic quantities. 11. Theory of liquid junction potential. Electromotive force of galvanic cells with liquid junction potential. Significance of galvanic cells. Electrochemistry power sources. 12. Potentiometry. Direct potentiometry – pH determination, determination of solubility product, activity coefficients and dissociation constants. Potentiometric titrations, equivalence point. 13. Electrode processes. Electrode polarization. Chemical and concentration polarization, elimination, significance. Decomposition voltage, overvoltage. Hydrogen overvoltage, Tafel equation, Butler–Volmer equation, mechanism of hydrogen deposition. Oxygen overvoltage. Basic aspects of polarography and electrochemical corrosion. 14. Real gases. Equations of state, theorem of corresponding states, compressibility factor, compressibility diagram. Thermodynamics of liquids. Theoretical exercises: - Introduction - introduction to exercise timetable, conditions for obtaining credit and recommended reading. Concentration of solutions, Raoult´s and Henry´s laws. - Real solutions of non-electrolytes, different concepts of activities, thermodynamic functions of solutions, determination of partial molar quantities. - Colligative properties of solutions. Miscible, limited miscible and immiscible binary liquid mixtures. - Calculation test I. - Electrolysis, transport numbers of ions. Conductivity of electrolytes. Strong electrolytes, link between ionic and medium quantities, Debye- Hückel's law. The product of solubility. - Chemical equilibriums in solutions of weak electrolytes, buffering capacity. - Electrode potentials, electromotive force of the galvanic cells and calculation applications for determination of physico-chemical quantities. - Calculation test II. Laboratory exercises: - Safety in the laboratory, an introduction to laboratory assignments, basic information on the exercises and the formulation of requirements for protocol processing. - Determination of partial molar quantities in liquid systems. - Viscosity measurement using Höppler viscometer. - Potentiometric determination of the dissociation constant of weak acids. - Determination of pH and buffering capacity of buffers, dependence of buffering capacity on the composition of buffers. - Electrolysis of aqueous electrolyte solutions. - Determination of degree of association of benzoic acid in xylene. - Determination of the product of solubility and dissolving heat of difficult- to-dissolve electrolytes conductometrically. - Determination of the mean activity coefficients by measuring the electromotive force. - Chinhydrone electrode and determination of its standard potential by measuring electromotive force. - Solubility of substances. - Conductive determination of the thermodynamic dissociation constant of weak acid. - Determination of liquid and membrane potential. - Evaluation of content and formal level protocols, credit. | ||||||

Recommended or Required Reading | ||||||

Required Reading: | ||||||

ATKINS, Peter William a Julio DE PAULA. Atkins' Physical chemistry. 10th ed. Oxford: Oxford University Press, c2014. ISBN 978-0-19-969740-3.
| ||||||

PEŘINOVÁ, Kristina a Lenka ŘEHÁČKOVÁ. Vybrané kapitoly z fyzikální chemie: studijní opora. Ostrava: Vysoká škola báňská - Technická univerzita Ostrava,
Fakulta metalurgie a materiálového inženýrství, 2014. ISBN 978-80-248-3578-5. Dostupné též z: https://www.fmt.vsb.cz/cs/student/studijni-opory/619/ NOVÁK, Josef. Fyzikální chemie: bakalářský a magisterský kurz.Praha: Vydavatelství VŠCHT, 2008. ISBN 978-80-7080-675-3. Dostupné též z: http://www.vscht.cz/fch/cz/pomucky/FCH4Mgr.pdf BUREŠ,Michal, Čestmír ČERNÝ a Pavel CHUCHVALEC. Fyzikální chemie II. Praha: Vysoká škola chemicko-technologická [Praha], 1994. ISBN 80-7080-200-6. DVOŘÁK, Jiří a Jiří KORYTA. Elektrochemie. Vyd. 3. (dopl. a rozš.). Praha: Academia, 1983. ATKINS, Peter William a Julio DE PAULA. Atkins' Physical chemistry. 10th ed. Oxford: Oxford University Press, c2014. ISBN 978-0-19-969740-3. | ||||||

Recommended Reading: | ||||||

ATKINS, Peter William a Julio DE PAULA. The elements of physical chemistry. 5thed. Oxford: Oxford University Press, 2009. ISBN 978-0-19-922672-6.
BAGOTSKY, V. S. Fundamentals of Electrochemistry. Second Edition. Hoboken: Wiley-Interscience, 2006. Dostupné též z: http://onlinelibrary.wiley.com/book/10.1002/047174199X | ||||||

ATKINS, Peter William. Fyzikálna chémia. (Časť 1, 2a, 2b, 3). Bratislava: Slovenská technická univerzita, 1999. ISBN 80-227-1238-8.
MOORE, Walter J. Fyzikální chemie. Praha: SNTL - Nakladatelství technické literatury, 1981. KELLÖ, Vojtech a Alexander TKÁČ. Fyzikálna chémia. Bratislava: Alfa,1977. NOVÁK, Josef. Příklady a úlohy z fyzikální chemie. Vyd. 2., přeprac. Praha: Vysoká škola chemicko-technologická [Praha], 2000. ISBN 80-7080-394-0. Dostupné též z: https://old.vscht.cz/fch/cz/pomucky/sbfch1.pdf ADAMCOVÁ, Zdenka. Příklady a úlohy z fyzikální chemie. Praha: SNTL - Nakladatelství technické literatury, 1989. ISBN 80-03-00104-8. LISÝ, Ján Mikuláš a Ladislav VALKO. Príklady a úlohy z fyzikálnej chémie. Bratislava: Alfa, 1979. LEITNER, Jindřich a Petr VOŇKA. Termodynamika materiálů. Praha: Vysoká škola chemicko-technologická [Praha], 1992. ISBN 80-7080-167-0. Dostupné též z:http://old.vscht.cz/ipl/termodyn/termmatskr.htm ATKINS, Peter William a Julio DE PAULA. The elements of physical chemistry. 5thed. Oxford: Oxford University Press, 2009. ISBN 978-0-19-922672-6. | ||||||

Planned learning activities and teaching methods | ||||||

Lectures, Individual consultations, Tutorials, Experimental work in labs, Project work | ||||||

Assesment methods and criteria | ||||||

Tasks are not Defined |