Course Unit Code | 338-0546/02 |
---|
Number of ECTS Credits Allocated | 4 ECTS credits |
---|
Type of Course Unit * | Choice-compulsory |
---|
Level of Course Unit * | Second Cycle |
---|
Year of Study * | |
---|
Semester when the Course Unit is delivered | Summer Semester |
---|
Mode of Delivery | Face-to-face |
---|
Language of Instruction | English |
---|
Prerequisites and Co-Requisites | Course succeeds to compulsory courses of previous semester |
---|
Name of Lecturer(s) | Personal ID | Name |
---|
| KOZ30 | prof. RNDr. Milada Kozubková, CSc. |
| BOJ01 | doc. Ing. Marian Bojko, Ph.D. |
| BLE02 | doc. Ing. Tomáš Blejchař, Ph.D. |
Summary |
---|
The subject deals with the physical meaning of turbulence and mathematical models of laminar and turbulent flow with heat transfer. The mathematical model is defined by a system of partial differential equations and supplemented by boundary and initial conditions. In addition to normal hydraulic flow conditions, wall conditions, heat transfer through the wall, time-dependent boundary conditions, and conditions for multi-phase flow are also taken into account. Classical models of turbulence are defined in detail. The theory is applied to examples solving bypassing of obstacles, buoyancy force, natural convection, heat transfer through the wall, etc. For the solution is applied software product Ansys-Fluent, which uses the finite volume method. |
Learning Outcomes of the Course Unit |
---|
In this course, students will learn in detail the basic concepts of modeling fluid flow and heat transfer, ie conduction and convection. They will also gain knowledge about mathematical models of multiphase flow with phase change (eg cavitation), optimization of geometry in terms of hydraulic quantities and the possibility of modeling time-dependent vortex structures. They will learn to solve selected problems using available software. |
Course Contents |
---|
1. Introduction, physical properties of fluids, balance transfer equation
2. Differential method, network types, finite volume method, relaxation, residuals
3. Conduction, heat conduction in a plate, time-dependent solution
4. Laminar flow, application to water flow between plates, boundary conditions, calculation of velocity profile
5. Conduction and convection in laminar flow, evaluation of thermal quantities, reference values
6. Turbulence, calculation and evaluation of turbulent quantities, boundary conditions for turb. quantities,
7. Accuracy of wall turbulence calculation according to gradient, RSM, LES, DNS methods, flow around cylinder
8. Conduction and convection in turbulent flow, single pipe wrapping, cross pipe wrapping and in-line, temperature-dependent physical properties
9. Heat exchangers in general, co-current, counter-current, physical properties of gas, kinetic theory, example of a tube heat exchanger, spiral heat exchanger
10. Time-dependent flow, boundary conditions of time-dependent solution, FFT-examples
11. Optimization of flow geometry (elbow)
12. Multiphase flow, physical properties of mixture, flow of gas mixture, gravity
13. Cavitation flow, porous medium flow - nozzle application,
14. Vectors in flow theory, discussion |
Recommended or Required Reading |
---|
Required Reading: |
---|
[1] ANSYS Fluent User’s Guide (Release 18.2). 2017.
[2] INCROPERA, P. F., DEWITT, P. D., BERGMAN, L. T., LAVINE, S. A. Fundamentals of Heat and Mass Transfer. 997 s. ISBN 978-0-471-45728-2.
|
[1] KOZUBKOVÁ, M., BLEJCHAŘ, T., BOJKO, M. Modelování přenosu tepla, hmoty a hybnosti. Ostrava: VŠB-TU Ostrava, 2011. 174 s. ISBN 978-80-248-2491-9.
[2] KOZUBKOVÁ, M., BOJKO, M., BLEJCHAŘ, T. Modelování přenosu tepla, hmoty a hybnosti. Ostrava: VŠB-TU Ostrava, 2019, 224 s. Dostupnost < http://www.338.vsb.cz/studium/skripta/>.
[3] KOZUBKOVÁ, M. Modelování proudění tekutin FLUENT, CFX. Ostrava: VŠB-TUOstrava, 2008. 115 s. ISBN 978-80-248-1913-6. (Elektronická publikace na CD ROM).
[4] KOZUBKOVÁ, M., BOJKO, M. Modelování přenosu tepla, hmoty a hybnosti- návody do cvičení. Ostrava: VŠB-TU Ostrava, 2019. 116 s. Dostupnost < http://www.338.vsb.cz/studium/skripta/>.
[5] ANSYS Fluent User’s Guide (Release 18.2). 2017.
[6] INCROPERA, P. F., DEWITT, P. D., BERGMAN, L. T., LAVINE, S. A. Fundamentals of Heat and Mass Transfer. 997 s. ISBN 978-0-471-45728-2.
|
Recommended Reading: |
---|
[1] ANSYS Fluent Theory Guide (Release 18.2). 2017.
[2] ANSYS Fluent Tutorial Guide (Release 18.2). 2017.
|
[1] BOJKO, M. Návody do cvičení „Modelování proudění“ – FLUENT. Ostrava: VŠB-TU Ostrava, 2008. 144 s. ISBN 978-80-248-1909-9.
[2] BLEJCHAŘ, T. Návody do cvičení „Modelování proudění“ – CFX. Ostrava: VŠB-TU Ostrava, 2009. 138 s. ISBN 978-80-248-2050-7.
[3] BLEJCHAŘ, T. Turbulence Modelování proudění – CFX. Ostrava: VŠB-TU Ostrava, 2012. 263 s. ISBN 978-80-248-2606-6.
[4] KOZUBKOVÁ, M., BOJKO, M., KRUTIL, J., BLEJCHAŘ, T. MODELOVÁNÍ SPALOVÁNÍ PALIV – UČEBNÍ TEXT. Ostrava: VŠB-TU Ostrava, 2013. 288 s. ISBN 978-80-248-3144-2.
[5] ANSYS Fluent Theory Guide (Release 18.2). 2017.
[6] ANSYS Fluent Tutorial Guide (Release 18.2). 2017.
|
Planned learning activities and teaching methods |
---|
Lectures, Tutorials |
Assesment methods and criteria |
---|
Tasks are not Defined |