Skip to main content
Skip header

Faculty of Electrical Engineering and Computer Science

ECTS Course Overview



Probability and Statistics

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code470-4405/02
Number of ECTS Credits Allocated6 ECTS credits
Type of Course Unit *Optional
Level of Course Unit *Second Cycle
Year of Study *
Semester when the Course Unit is deliveredWinter, Summer Semester
Mode of DeliveryFace-to-face
Language of InstructionEnglish
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
BRI10prof. Ing. Radim Briš, CSc.
LIT40Ing. Martina Litschmannová, Ph.D.
Summary
Students will be able to define basic concepts of probability, describe statistical methods, and explain their significance. They will apply statistical techniques and procedures to analyze data and interpret the results. The course will also develop students' skills to analyze and critically evaluate statistical information, as well as to propose appropriate methods for solving practical problems in probability and statistics.
Learning Outcomes of the Course Unit
The course aims to enable students to acquire knowledge of probability theory and applied statistics and to demonstrate the ability to use this knowledge practically.
Course Contents
1) Introduction to Probability Theory
2) Discrete random variable
3) Selected distributions of discrete random variables
4) Continuous random variable
5) Selected distributions of continuous random variables
6) Limit Theorems
7) Random Vector
8) Introduction to statistics, exploratory analysis
9) The survey, random sampling and basic sample characteristics
10) Introduction to estimation theory
11) Introduction to hypothesis testing (principle)
12) Hypotheses testing - mean, probability, variance (one-sample and two-sample tests)
13) Analysis of variance (verification normality, ANOVA and Kruskal-Wallis test)
14) Non-Parametric Hypothesis Tests
Recommended or Required Reading
Required Reading:
BERTSEKAS, Dimitri P. a TSISIKLIS, John N. Introduction to probability. Second edition. Nashua, NH: Athena Scientific, [2008]. ISBN 978-1886529236.
JAMES, Gareth; WITTEN, Daniela; HASTIE, Trevor a TIBSHIRANI, Robert. An introduction to statistical learning: with applications in R. Second edition. Springer texts in statistics. New York: Springer, [2021]. ISBN 978-1071614174.
LITSCHMANNOVÁ, Martina. Vybrané kapitoly z pravděpodobnosti. Online. VŠB-TUO, 2011. Dostupné z: http://mi21.vsb.cz/modul/vybrane-kapitoly-z-pravdepodobnosti.
LITSCHMANNOVÁ, Martina. Úvod do statistiky. Online. VŠB-TUO, 2011. Dostupné z: https://mi21.vsb.cz/modul/uvod-do-statistiky.
ANDĚL, Jiří. Základy matematické statistiky. Vyd. 3. Praha: Matfyzpress, 2011. ISBN 978-80-7378-162-0.
JAMES, Gareth; WITTEN, Daniela; HASTIE, Trevor a TIBSHIRANI, Robert. An introduction to statistical learning: with applications in R. Second edition. Springer texts in statistics. New York: Springer, [2021]. ISBN 978-1071614174.
Recommended Reading:
WHEELAN, Charles. Naked Statistics: Stripping the Dread from the Data. W. W. Norton & Company, 2014. ISBN 978-0393347777.
ANDĚL, Jiří. Statistické metody. Páté vydání. Praha: Matfyzpress, 2019. ISBN 978-80-7378-381-5.
FRIEDRICH, Václav. Statistika 1: vysokoškolská učebnice pro distanční studium. Plzeň: Západočeská univerzita, 2002. ISBN 80-7082-913-3.
BRUCE, Peter; BRUCE, Andrew a GEDECK, Peter. Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python. 2. O'Reilly Media, 2020. ISBN 978-1492072942.
Planned learning activities and teaching methods
Lectures, Tutorials
Assesment methods and criteria
Tasks are not Defined