Skip to main content
Skip header

ECTS Course Overview



Finite Element Methods 1

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code330-0316/02
Number of ECTS Credits Allocated5 ECTS credits
Type of Course Unit *Choice-compulsory
Level of Course Unit *First Cycle
Year of Study *
Semester when the Course Unit is deliveredWinter Semester
Mode of DeliveryFace-to-face
Language of InstructionCzech, English
Prerequisites and Co-Requisites Course succeeds to compulsory courses of previous semester
Name of Lecturer(s)Personal IDName
FUS76doc. Ing. Martin Fusek, Ph.D.
HAL22doc. Ing. Radim Halama, Ph.D.
POR05doc. Ing. Zdeněk Poruba, Ph.D.
MAR440Ing. Alexandros Markopoulos, Ph.D.
PRZ031Ing. Jana Bartecká
MAW007Ing. Pavel Maršálek, Ph.D.
Summary
The subject forms the basis for the use of finite element method in engineering practice.
Contents are general formulation of continuum mechanics, fundamentals linearization, introduction to variational methods, finally FEM applications to specific types of problems of linear elasticity.
Learning Outcomes of the Course Unit
Students gain the theoretical foundations of the finite element method (FEM) and the procedures for solving problems of elasticity using the numerical method. Basic training of FEM application on the selected tasks from engineering practice.
Course Contents
Subject includes an explication of FEM foundations for linear structural problems and also has practical focus:
1. Lecture – Elementary thought of FEM. Selection of interpolator functions. Types of elements. Derivation of stiffness matrix of a truss element. Equations of an elasticity mathematical theory. Minimal principle of potential energy. Process at FEM calculation. Conditions of convergence.
2. Lecture – assembly of global stiffness matrix and right side. Foundations of Ansys Workbench (description of individual models, work with help). Example 1: application example – beam in 3D.
3. Lecture – Computational modelling. Simplified exercises from 3D to 1D and 2D. Example 2: wrenche.
4. Lecture – Choice of boundary conditions. Singularity. Reading geometry from CAD model and its modification. Example 3: symmetry usage.
5. Lecture- Error of FEM calculation (aposteriori estimate). Adaptive FEM algorithm (h-method). Example 4: Think walled pressure tin.
6. Lecture - Seminary work.
7. Lecture – Seminary work.
8. Lecture – Seminary work.
9. Lecture – Final test, finalization and handing over a seminary work.
Recommended or Required Reading
Required Reading:
[1] MADENCI, E., GUVEN, I. The Finite Element Method and Applications in Engineering Using Ansys®. Springer, 2006, 686p. ISBN 978-0-387-28290-9

[2] ZIENKIEWICZ, O. C., TAYLOR,R.L. a ZHU, J.Z. The finite element method: its basis and fundamentals. 6th ed. Oxford: Elsevier Butterworth-Heinemann, 2005. ISBN 0-7506-6320-0.
[1] FUSEK, Martin, ROJÍČEK, Jaroslav, Metoda konečných prvků I [online], Ostrava: VŠB-TU Ostrava, 2013, ISBN 978-80-248-3023-0, Dostupné z: http://projekty.fs.vsb.cz/463/edubase/VY_01_010/
[2] LENERT, Jiří. Úvod do metody konečných prvků. Ostrava: VŠB-Technická univerzita, 1999. ISBN 80-7078-686-8.
[3] SZWEDA, Jan, Zdeněk PORUBA, Roman SIKORA a Ondřej FRANTIŠEK. Matematika v pozadí inženýrských úloh [online]. Ostrava: VŠB-TU Ostrava, 2012 [cit. 2018-01-11]. Dostupné z: http://mi21.vsb.cz/modul/matematika-v-pozadi-reseni-inzenyrskych-uloh
[4] ZIENKIEWICZ, O. C., TAYLOR,R.L. a ZHU, J.Z. The finite element method: its basis and fundamentals. 6th ed. Oxford: Elsevier Butterworth-Heinemann, 2005. ISBN 0-7506-6320-0.
[5] LENERT,J. Základy matematické teorie pružnosti. 1. vyd. Ostrava : VŠB-TU, 1997. 96 s. ISBN 80-7078-437-7
Recommended Reading:
[1] BEER,G.-WATSON,J.O. Introduction to Finite and Boundary Element Methods for Engineers. John Wiley & Sons, 1992, 509p.ISBN 0 471 92813 5
[1] FUSEK, Martin, MKP v Nastranu a Patranu [online], Ostrava: VŠB-TU Ostrava, 2011, ISBN 978-80-248-2730-8, Dostupné z: http://projekty.fs.vsb.cz/147/ucebniopory/978-80-248-2730-8.pdf
[2] FUSEK, Martin, Týmová cvičení předmětu MKP I [online], Ostrava: VŠB-TU Ostrava, 2011, ISBN 978-80-248-2729-2, Dostupné z: http://projekty.fs.vsb.cz/147/ucebniopory/978-80-248-2729-2.pdf
[3] KOLÁŘ, Vladimír, Ivan NĚMEC a Viktor KANICKÝ. FEM: principy a praxe metody konečných prvků. Praha: Computer Press, 1997. ISBN 80-7226-021-9.
[4] BITTNAR,Z.-ŠEJNOHA,J. Numerické metody mechaniky 1. Praha : Vydavatelství ČVUT, 1992. 310 s. ISBN 80-01-00855-X.
[5] BITTNAR,Z.-ŠEJNOHA,J. Numerické metody mechaniky 2. Praha : Vydavatelství ČVUT, 1992. 261 s. ISBN 80-01-00901-7.
[6] BEER,G.-WATSON,J.O. Introduction to Finite and Boundary Element Methods for Engineers. John Wiley & Sons, 1992, 509p.ISBN 0 471 92813 5
[7] MADENCI, Erdogan. a Ibrahim. GUVEN. The finite element method and applications in engineering using ANSYS. New York: Springer, c2006. ISBN 0-387-28289-0.
Planned learning activities and teaching methods
Lectures, Tutorials, Project work
Assesment methods and criteria
Tasks are not Defined