Skip to main content
Skip header

ECTS Course Overview



Modeling in Geotechnics

* Exchange students do not have to consider this information when selecting suitable courses for an exchange stay.

Course Unit Code224-0224/03
Number of ECTS Credits Allocated4 ECTS credits
Type of Course Unit *Choice-compulsory
Level of Course Unit *Second Cycle
Year of Study *
Semester when the Course Unit is deliveredWinter, Summer Semester
Mode of DeliveryFace-to-face
Language of InstructionEnglish
Prerequisites and Co-Requisites
PrerequisitiesCourse Unit CodeCourse Unit Title
224-0201Soil and Rock Mechanics
224-0202Foundation Engineering
224-0207Underground Engineering
224-0226Geotechnical Constructions
Co-requisitiesCourse Unit CodeCourse Unit Title
224-0220Mechanics of Underground Structures
224-0221Finite Element Method
Name of Lecturer(s)Personal IDName
HRU30doc. RNDr. Eva Hrubešová, Ph.D.
Summary
The subject consists of modeling complex problems in the underground and
geotechnical engineering. Students are introduced to the requirements to the input data, 2D and 3D finite element method and other numerical methods, which are used for the modeling of geotechnical problems. To these methods belong boundary element method, finite difference elements method and distinct element method, which is suitable for the modelling of discontinuous rock mass The students engaged in tasks of modeling of slope stability with consideration of various types of stabilizing elements (bolts, nails,geotextiles, etc.), modeling the effects of groundwater in the slope, stability of rock walls. Another area is the role of the underground construction - stability of tunnels and underground collectors, taking into account support construction of various types (including spatial models), calculations sheeting and foundation structures. The course also deals with the fundamentals of back analysis and stochastic methods.
Learning Outcomes of the Course Unit
- the idea of ​​the modeling methods, comparison of different methods of
terms of applied mathematical methods, demand on input data and in terms of
suitability of their application to certain types of geotechnical tasks
- analysis of model input data, boundary and initial conditions
- use a various specialized software
- analysis of modeling results
Course Contents
1. Introduction, model types (analytical, numerical)
2. Basic quantities, equations and relationships for modelling of tasks from the field of Geotechnics and underground engineering
3. Types of constitutive material models of soil and rocks (linear, Mohr-Coulomb, Cam-Clay, hypoplastic model, Hoek-Brown)
4. General procedure for numerical modelling
5. Principle of the Limit equilibrium method for modelling of the stability of the slopes
6. Finite element Method
7. Finite difference Method
8. Boundary element Method
9. Distinct element method
10. Fundamentals of finite element modelling in the Plaxis software
11. Fundamentals of finite element modelling in the MIDAS GTS software
12. Basic aspects of the stability modelling of the slopes, including modelling of the consolidation process
13. Principles of underground construction modelling
14. Fundamentals of inverse (back) analysis and stochastic modelling
Recommended or Required Reading
Required Reading:
Bull, J.W. Numerical Analysis and Modeling in Geomechanics. Spon Press. 2003. ISBN 0-415-24328-9.
Potts, D., Zdravkovic, L. Finite element analysis in geotechnical engineering. Thomas Telford. 1999. ISBN 0-7277-2753-2.
Hrubešová, E.2012. Modelování v geotechnice[online]. VŠB-TU Ostrava[cit. 4.4.2018]: Dostupné z:http://www.geotechnici.cz/predmety/modelovani-v-geotechnice
Herle,I. Základy matematického modelování v geomechanice. Praha : Karolinum, 2003.

Recommended Reading:
Gioda, Z. Modeling in Geomechanics. Wiley 2000.
Soil and Rock Behaviour and Modelling. Proceedings of Sessions of Geoshanghai. Luna. R et al.(ed.)Shanghai: China, 2006.ISBN 0-7844-0862-9.
Hrubešová, Eva. Některé možnosti stochastického modelování úloh z oblasti geotechnického a podzemního stavitelství. Ostrava, 2005. Habilitační práce. Vysoká škola báňská - Technická univerzita Ostrava.
Svoboda, T., Mašín, D., Boháč, J. Hypoplastický a Mohr-Coulombův model při simulaci tunelu v jílech. Tunel 4/2009.
Hrubešová, E. a kol. Pravděpodobnostní přístup ke statickému a stabilitnímu řešení ostění tunelu Valík. Sborník konference Podzemní stavby Praha 2003. pp. 131 – 138.
Planned learning activities and teaching methods
Lectures, Individual consultations, Tutorials, Project work
Assesment methods and criteria
Tasks are not Defined